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This paper is devoted to an (n +4)-dimensional unification of NGT (nonsym- 
metric gravitation theory) and Yang-Mills theory in a Jordan-Thiry manner. 
We find "interference effects" between gravitational and Yang-Mills fields which 
appear to be due to the skew-symmetric part of the metric on the (n+4)- 
dimensional manifold (nonsymmetrically metrized principal fiber bundle). Our 
unification, called the nonsymmetric-non-Abelian Jordan-Thiry theory, becomes 
classical if the skew-symmetric part of the metric is zero. We find the Yang-Mills 
field Lagrangian up to the second order of approximation in h~ = g ,~-  ~7~. 
We also deal with the Lagrangian for the scalar field (connected to the "gravita- 
tional constant"). We consider the spin content of the theory and a relationship 
between the cosmological constant and the coupling constant between the skewon 
field and the gauge field in the first order of approximation. We show how to 
derive a dielectric model of a confinement from "interference effects" in these 
theories. We underline some similarities between the nonsymmetric Jordan-Thiry 
Lagrangian in the flat space limit and the soliton bag model Lagrangian. 

I N T R O D U C T I O N  

The a im of  this pape r  is to construct  the K a l u z a - K l e i n  ( Jo rdan -Th i ry )  

ana logue  with Einste in ' s  geomet ry  on a pr inc ipal  fiber bundle  in the general  

non -Abe l i an  case (for classical results see refs. 1-91). In o ther  words,  it 

will be an (n + 4 ) -d imens iona l  unif icat ion o f  N G T  (nonsymmet r i c  gravita-  

t ion theory) ,  gauge (Yang-Mi l l s )  fields, and scalar  forces connec ted  to the 

gravi ta t ional  constant  (as in the sca la r - t ensor  theories  o f  gravi tat ion;  see 

ref. 50). Our  unif icat ion uses a nonsymmet r i c  metr iza t ion  o f  fiber bundles .  

We in t roduce  a scalar field p in a J o r d a n - T h i r y  manne r  (see ref. 21). We 

get the fo l lowing  " in te r fe rence  effects" be tween  Y ang -M i l l s  and gravita-  
t ional  fields: 

1. A new term in the Yang -Mi l l s  Lagrangian,  

- 1  
4---~ hab[g[~'l Ha~"][g['~13l Hb'~] 
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2. A change in the classical part of  the Yang-Mills  Lagrangian, 
replacing hab by 

lab = hab + I,l, kab 

3. The existence of  a Yang-Mills field polarization of  the vacuum M a ~  
with an interpretation as a torsion in higher dimensions. 

4. An additional term in the Kerner -Wong equation (equation of 
motion for a test particle in the gravitational and Yang-Mills  fields) 

2 ( ~o )  ( Ibdg~13 --1dbg~#) La~'U V 

where m0 is the rest mass of  a test particle a n d  qb is its color (isotopic) charge. 
5. A new energy-momentum tensor Tg~ uge with zero trace. 
6. Sources for Yang-Mil ls  fields, the current j,a. 
All of  these effects vanish if the metric on P (fiber bundle becomes 

symmetric. In this case we get the classical results. 
We get in the Moffat-Ricci  curvature scalar, on an (n + 4)-dimensional  

manifold P, a Lagrangian of the scalar field ~ ,  

~sca l (~ )  = (mg, (v~) + n2 g [ ~ ] g s ~ g ( S ~ ' ) ) ~ , ~ o v  

where 

m = (ltdclltd~]- 3 n ( n  - 1)), n = dim G 

This field is connected to the gravitational constant by K = e -r 
where K is the gravitational constant. The trace of  the energy-momentum 
tensor for this field is not zero. This suggests that �9 is massive and has 
Yukawa-type behavior. This indicates that T has a short range and the 
theory does not violate the weak equivalence principle. Furthermore,  the 
gravitational "constant"  K does not change at long distances. This statement 
also supports the masslike term in the equation for ~ ,  

- 8 ( n  + 2)7r e-(n+ 2)"l" (,~y M --2qb) = - 8 ( n  +2)~" e-(n+ 2)q',~,VM -- e(n+ 2)"!" A (Iz ) 

where 

--lab 

is the Lagrangian for the Yang-Mills  field; qb has an interpretation as a 
cosmological term in our theory 

e2(n+2)q �9 ~(tz)  - - -  A ( ~ )  ~ (e 2("+2)*) const 
167r tz 

or ~ ( e  2("+2)*) ( for la rge /z)  
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which now depends on the scalar field q~. We also get a scalar-force term 
in the equation of motion for a charged test particle moving in the gravita- 
tional and Yang-Mills  fields: 

4m 2 e2*~.~ 

where ]1 q 112= -h~bqaq ~ is the length squared of the color (isotopic) charge 
of a test particle. This force is of short range. I f  the skew-symmetric part  
of  the metric YAB becomes zero, most of  these effects vanish. However,  the 
propagat ion of  the scalar field is possible only if n -- 2. 

Let us make some remarks on differences between the nonsymmetric 
non-Abelian Kaluza-Kle in  and Jordan-Thiry  theories. In the nonsymmetric  
non-Abelian Kaluza-Klein  theory there is an Ansatz p = 1 (Y~b = lab = hab d- 
~k~b). This condition seems to be quite arbitrary and because of this we 
consider a more general case called Jordan-Thi ry  theory where Yak = 
p2(hab + tXkab) and p = p(x) is a dynamical field. 

Moreover,  the detailed examination of geodetic equations in both cases 
reveals the following. I f  p =const ,  the geodetic equation possesses an 
integral of  motion 

dx ~ dx ~ 
y(hor(u(T)) ,  hor(u(~-))) = g~ dr d ~ -  const (**) 

which allows us to maintain an initial normalization of the four-velocity of  
a test particle. In the case with y~b(x)= p21ab (i.e., p ~ const) this is not 
possible in general (see Section 4.12). For this the condition Yak = lab does 
not seem to be an Ansatz in the theory, but rather a conclusion from (**). 

This paper  is organized as follows. In Section 1 we give some elements 
of  geometry used in the paper. Section 2 is devoted to a nonsymmetric 
tensor on a Lie group. In Section 3 we present a nonsymmetric  metrization 
of  the fiber bundle. In Section 4 we formulate the nonsymmetric Jordan-  
Thiry theory in a general non-Abelian case. We calculate connections tOAB 
and wAB on the (n +4)-d imens iona l  manifold which are analogous to the 
connections o5~r and l~z~ from NGT. In Section 5 we write the geodetic 
equation on _P (nonsymmetrically metrized fiber bundle with scalar field p) 
and we find new corrections to the equation of motion for a test particle. 
In Section 6 we calculate the 2-form of torsion for the connection wAB and 
the 2-form of curvature for wAB. We calculate also the curvature tensor for 
toA~ and wAB. After this we find the Moffat-Ricci curvature scalar for 
wAB which plays the role of  the Lagrangian in our theory. In Section 7 we 
deal with a connection aSab on a typical fiber and with the cosmological 
constant in our theory. In Section 8 we perform a conformal transformation 
for the g,~ tensor and we transform the scalar field p to 'It. Section 9 is 
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devoted to the gauge invariance of  the Lagrangian. In Section 10 we define 
the Palatini variational principle for R ( W )  and we get equations for the 
gravitational, Yang-Mills, and scalar fields. We interpret our results. 

Section 11 is devoted to some special cases in our theory. In Section 
12 we deal with the linearization procedure in our theory. Section 13 deals 
with geodetic equations in a linear approximation. In Section 14 we examine 
some general properties of  geodesics in our theory and the geodetic deviation 
equation. Section 15 gives some conclusions and prospects. 

In Appendix A we consider a more general case for 

~ b  = Pub(P) = P~b(X, g) 

p e P ,  x c U c E ,  g c G  

where P~b is a dynamical field depending on a space-time point (x ~ E) 
and right-invariant with respect to the (right) action of the group G. The 
detailed examination of  geodetic equations on P leads to the conclusion 
that the tensor/3 has the shape 

P~b(X, g) = p2(X)lab(g) or /3 = pa l 

where lab is right-invariant with respect to the (right) action of the group 
G (i.e., it has a factorization property), and p = p(x )  is a scalar field on E 
(i.e.,/3 = P~bO a | 0 b, l = labO a | ok). Moreover, in order to get a proper limit 
for the Yang-Mills Lagrangian, i.e., for/x = 0, we suppose that [(ab) -= h(ab) 
(the bi-invariant tensor on G). 

Moreover, we can get right-invariance of lab, demanding the gauge 
invariance of  the curvature scalar built from a connection (DAB (i.e., we 
come to the nonsymmetric metrization of the fiber bundle P considered in 
Section 3 .  

We can summarize our conclusions in two theorems. 

Theorem I: 
1. Let P be a principal fiber bundle over a space-time E with a structural 

group G (semisimple and compact), a projection ~r, and let us define on P 
a connection to. 

2. Let o5~r be a linear connection on a fiber bundle of  frames over E 
compatible in the Einstein-Kaufman sense with the nonsymmetric (real) 
tensor g ~  defined on E. 

3. Let Pub be a family of  nonsymmetric right-invariant tensor fields 
defined on G and parametr ized by a point on E, i.e., Pab = Pab(X, g), 
x ~  U c  E, g c  G (/3= PabOa@ob). 

4. Let 3,-- ~'ABOA| B be a tensor field on P (a nonsymmetric metric) 
and let toAB be a linear connection on a fiber bundle of frames over P 
compatible in the Einstein-Kaufman sense with this tensor (i.e., we have 
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to  do with o5 = tOABxBA).  The tensor 3' in a lift horizontal  basis has the form 

3"AB \ 0 ] Pab] 

i.e., 

7 = V(A~) OA| OB = ~r*g_| P(ab)O ~ | 0 b = ~r*g_| ~ 

~1 = 3"[AB]O A A 0 B = "fl'~ g ~  P[ab]O a A 0 b = qT* g ~  P 

(see Section 3 for some details concerning our  notations).  
5. Let geodetic equat ions (for a geodetic  F) with respect to the con- 

nect ion toAB possess n first integrals o f  mot ion  v ~ = const being Ad-type 
quantities and  a linear funct ion o f  

dx  ~ 
u ~ = u a = (ver(u))  a 

dt ' 

(where u is a tangent  vector  field to geodesic F), i.e., there is a bi-invariant 
invertible matrix Xab such that  

l) a -~- ~abub 

or there is a bi- invariant  invertible linear t ransformat ion field on P such that 

: Ver(Tanp (P) )  -~ Ver(Tanp (P) )  

~p o tOp = top o ~p, and vp = ~p(ver(up)) ,  p ~ U • G, U c  E in a local trivializ- 
ation, and Vp = const  for  F c p. Then, there exists a scalar field p -- p ( x )  and 
a nonsymmetr ic  tensor  lab on G such that: 

1. P~b = P21ab (a factorizat ion property) ,  (/5 = p21)" 
2. lab is r ight-invariant with respect to the right act ion of  the group G 

on G (see Section 2 for details and definitions). 
3. Y and O5 are right-invariant with respect to the right act ion o f  the 

g roup  G on P, i.e., 4~'(g)Y = 3' and 4~*(g)o5 = o5, where ~ is an act ion 
o f  the g roup  G on the bundle  o f  frames over (_P, 3') lifted f rom the 
gauge bundle.  

Theorem II. Let condit ions 1-5 be satisfied and in addit ion:  
6. Let geodetic  equat ions for a curve F with respect to tOAB possess a 

first integral o f  mot ion  

dx ~ dx  ~ 
g(~t~ dt dt - const  

on F, i.e., 3 ' (hor(u),  h o r ( u ) ) =  const, where u is tangent  to F ~ P. Then the 
scalar field p ( x )  = const,  i.e., P~b = lab (/5 = l) (up to a constant  factor  which 
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can be absorbed in the definition of lab) [hor is understood in the sense of  
to on P (a gauge bundle)].  For lob right-invariant and demanding a proper  
limit for the Yang-Mills  Lagrangian in the case/~ -- O, we easily get that 

lab = hab + lZkab ( l = h + txk ) 

where hob is a bi-invariant tensor on G and kab is a skew-symmetric 
right-invariant tensor on the group G defined in Section 2. 

Briefly, if conditions 1-6 are satisfied, we get the nonsymmetric  non- 
Abelian Kaluza-Kle in  theory (N2AK2T). I f  conditions 1-5 are satisfied, we 
get the nonsymmetr ic  non-Abelain Jordan-Thi ry  theory (N2AJT2). 

In this way the assumption of  the factorization property of  P,,b and 
the constancy of  a field p do not seem to be arbitrary conditions, but rather 
the conclusions of  Theorems I and ]I. The proofs of  Theorems I and I I  
can be found in Appendix A. Both conclusions justify our interest in the 
theory presented in this paper  from the physical and mathematical  points 
of  view. 

Let us note that our construction with a right-invariant l,,b, (1) tensor 
leads to a notion which can be called the Eins te in-Kaufman G-structure 
(right G-structure).  

In Appendix  B we consider some problems connected to test particle 
motion on a nonsymmetrical ly metrized bundle P. 

1. ELEMENTS OF G E O M E T R Y  

In this section we introduce the notations and define the geometric 
quantities used in this paper.  We use a smooth principal fiber bundle _P, 
which includes in its definition the following list of  differentiable manifolds 
and smooth maps: 

A total (bundle) space _P. 
A base space E;  in our case it is a space-time. 
A projection ~r : P --> E. 
A map q b : p •  G--> P defining the action of G on P; if a, b ~  G and 

e c G is the unit element, then ~ ( a ) o q b ( b ) - - q b ( b a )  and qb(e )= id  and 
~ ( a ) p = a p ( p ,  a ) = R a p = p a ;  moreover ~-oqb(a)= It. to is a 1-form of  a 
connection on P with values in the Lie algebra of  the group (3. Let qb'(a) 
be the tangent map to qb(a), whereas qb*(a) is contragradient to ~ ( a )  at 
the point a. The form to is a form of Ad-type, i.e., 

c~*(a)w = Ad~-lto (1.1) 

where Ado ~ G L ( g )  is the tangent map to the internal automorphism of the 
group G (i.e., it is an adjoint representation of  a group G) 

ad~ (b) = aba -1 
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Due to the form to, we can introduce the distribution field of  linear elements 
H ,  r e  _P, where H~c  Tr(_P) is a subspace of the space tangent to _P at a 
point r and 

1) e Mr r to(V) = 0 (1.2) 

We have 

T,(_P)  = V r |  (1.3) 

where Hr is called a subspace of horizontal vectors and Vr of vertical vectors. 
For vertical vectors v e V~ we have ~-'(v) = 0. This means that v is tangent 
to fibers. Let us define 

v = hor(v) + ver(v),  hor(v) e Hr, ver(v) e Vr (1.4) 

It is well known that the distribution Hr is equivalent to a choice of  the 
connection to. We can reproduce the connection form to demanding that 
,'rr(m: H,.--> T,,.,(,.)(E) is a vector space isomorphism (dim Hr = d i m  E =4) ,  
H.(r,g) = d~'(g)Hr, [T=(r)(E) is a tangent space to space-time E at a point 
r We use the operation "hor"  for forms, i.e., 

(hor f l ) (X,  Y) =/3(hor  X, hor Y) (1.5) 

where X, Y e  Tr(_P). The 2-form of curvature of  the connection to is 

= hor dto (1.6) 

It is also a form of Ad-type like to. f~ obeys the structural Cartan equation 

~ =  dto+ ~[to, to] (1.7) 

where 

[to, to](X, Y ) =  [to(X),  to(Y)] 

Bianchi's identity for to is 

hor d~2 = 0 (1.8) 

For the principal fiber bundle we use the following convenient scheme 
(Figure 1A). The map e:U-- ' ,P,  U c E  ( U  open), so that e o z r = i d u  is 
called a local section. From the physical point of  view it means choosing 
the gauge. Thus, 

e ' t o  = e * ( t o a X , , )  = A " , f i " X , ~  = A 
(1.9) 

e * O  = e * ( O ~  _ !  ,, m~ - =F,~,O ^ if"X,, 

Further, we introduce the notation 

- 2"" g~'  A (1.10) 
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The principal fiber bundle _P. 
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where 0 " =  rr*(O") and 

a a 
F ,~  = OgA v -O~Aa,  + ,.~a a b a  c v,.~ bc,'Tt lx,cTt ~ 

Xa (a = 1, 2 , . . .  dim G = n) are generators of  the Lie algebra g of  the group 
G and 

[x~, Xb] = c % x ~  

Analogously we can introduce a second local section f :  U ~  P, and 
corresponding to it A=f*~o ,  P = f * f L  For every x e U c E there is an 
element g ( x )  ~ G such that f ( x )  = e ( x ) g ( x )  = Rg(x)e(x) = ~i,(e(x), g(x)) .  
Due to equation (1.1) and an analogous formula for ~ ,  one gets A =  
.4d~-~A + g 1 dg and P = Adg-~F. These formulas give t!le geometrical mean- 
ing of gauge transformation.  

In this paper  we use also a linear connection on manifolds P and E 
using the formalism of  differential forms. So the basic quantity is a 1-form 
of a connection wAB. This is an R-valued (coefficient) connection form and 
it is referred to the principal fiber bundle of  frames with P or E as a base. 
The 2-form of  curvature is 

~'~A B = doj  AB-'~- O)Ac  A ooCB (1.11) 

and the 2-form of  torsion 

~)A = D O  A (1.12) 

where 0 A a r e  basic forms, and D means the exterior covariant derivative 
with respect to toAB. The following relations define the interrelation between 
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our symbols and generally used ones: 

A FABcO C O) B ~ 

0 A = I Q A B c O B  A 0 C 

l l.~n .QC oD ~ A  B = ~Jt~ BCD t, A 

289 

(1.13) 

Where I~ABc a r e  coefficients of the connection (they do not have to be 
symmetric in indices B and C), RABco is a tensor of  curvature, and QABc 
is a tensor of  torsion. Covariant  exterior differentiation with respect to (oAB 
is given by the formula 

D ~  a = d",'~A-'[- toAc  A ~ C  
(1.14) 

D ~ A B  = d ' ~ a B  -'[- m A c  A ~ C  B -- (.oCB A ~'.a C 

The forms of curvature f~AB and torsion 0 A obey Bianchi identities 

D~AB = 0 
(1.15) 

D O  A = ~'~A B A 0 B 

In this paper  we use also Einstein's + and - differentiations for the 
nonsymmetric  metric tensor gAB : 

Dgn+ B- = DgnB - g A D Q  DBCO C ( 1 . 1 6 )  

where D is the convariant exterior derivative with respect to wAB and QDBC 
is the tensor of  torsion for (oAB. In a homolonomic system of coordinates 
we easily get 

DgA+B- = gA+B ;cO C = [gAtLC -- gDBFDAc -- gADFDcB]O C (1.17) 

All quantities introduced in this section and their precise definitions can 
be found in refs. 51 and 59-61. 

Finally, let us connect a general formalism of the principal fiber bundle 
with a formalism of a linear connection on E or P. 

Let M be an m-dimensional pseudo-Riemannian manifold with metric 
g of  arbitrary signature. Let T(M) be the tangent bundle and O(M, g) the 
principal fiber bundle of  frames (orthonormal frames) over M. The structure 
group of O(M, g) is the group Gl(m, ~) or the subgroup of Gl(m, E), 
O ( m - p ,  p), which leaves the metric invariant. Let II  be the projection of 
O(M, g) onto M. Let X be a tangent vector at a point x in O(M, g). The 
canonical or soldering form 0 is an Rm-valued form on O(M, g) whose 
Ath component  fin at x of  X is the Ath component  of  r I ' (X)  in the frame 
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x. The connection form o3 = ( . o A B X B A  is a 1-form on O(M, g) which takes 
its values in the Lie algebra gl(m, R) of Gl(m, R) or in o(m-p ,p)  of 
O(m-p ,  p) satisfies the structure equations 

do3 +�89 o3] = l~ = ITIor do3 (1.18) 

where ITIor is understood in the sense of o3 and l~ =~AaXBA is a gl(m, R)- 
(o(m-p,  p))-valued 2-form of the curvature. We can write equation (1.18) 
using R2m-valued forms and commutation relations of the Lie algebra 
gl(m, R)(o(m, m - p ) ) ,  

f i  a B : do3 AB Jr o3 A C A o3 C B (1.19) 

Taking any local section of O(M, g)e, one can get forms of coefficients of 
the connection, torsion, curvature, and basic forms 

e* o3 AB = s AB 

e*fiAB : ~a  B 
e,~a = 0 A (1.20) 

e*~ A = O A 

The forms of the right-hand side of equations (1.20) are the forms 
defined in equations (1.11), (1.12), (1.13), (1.14), etc. We call this formalism 
a linear (affine, metric, Riemannian, Einstein) connection on M. 

p" GL ( n + 4,R ) 

p iii 

Jl" & 

GL(n,R) 

Fig. lB. 

GL(4,R 

Principal fiber bundles _P, P' ,  P", and P" ;  P"  is a prinmpal fiber bundle of  frames 
over G. 
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In our theory it is necessary to consider at least four principal fiber 
bundles: a principal fiber bundle P over E with a structural group G (a 
gauge group), connection to, and horizontality operator "hor" ;  a principal 
fiber bundle P '  of  frames over (E, g) with the connection o3~oX~ = to', a 
structural group Gl(4 ,  R)(O(1,  3)), and an operator of  horizontality hor; a 
principal fiber bundle P" of  frames over (_P, 3') (a metrized fiber bundle _P) 
with a structural group GI (4+  n, N ) ( O ( n  +3,  1)), a connection o ) A B X B  a = 0), 

and an operator of  horizontality hor; and a principal fiber bundle of  frames 
P "  over G with a projection I I" ,  operator of  horizontality (hor)",  a connec- 
tion o3, and the structural group Gl(n ,  R) .  Moreover, in order to simplify 
considerations, use the formalism of linear connection coefficients on mani- 
folds (E, g), (_P, 3') and a principal fiber bundle formalism for _P (a principal 
fiber bundle over E with the structural group G a gauge group). This will 
make the formalism more natural and readable (see Figure 1B). 

2. THE N O N S Y M M E T R I C  TENSOR ON A LIE G R O U P  

Let G be a Lie group and let us define on G a tensor field h = habV a | V b 
and a field of  a 2-form k = kabV a ^ v b, where 

dva 1,'~a b = - ~ t ~  bcV ^ V c (2.1) 

V a is a usual left-invariant frame on G, and Cabc are structure constants. 
Let X~ be generators of  a Lie algebra G - g ;  Xa are left-invariant vector 
fields on G and they are dual to the forms v a 

[X, , ,  Xb] = CC~bXc (2.2) 

Using h and k, we construct a tensor field on G, 

lab = hab q- tzk~b (2.3) 

where /x  is a real number. Let us recall that the left-invariant vector fields 
on G are infinitesimal transformations of  a right action of G on G. The 
symbol Ado(g )  means a matrix of  the adjoint representation of the group 
G. We denote it Adg. R means a right action of the group G on G; L, a 
left action [R(g) ,  L(g),  g ~ G]. 

We are looking for the following h and k: 

R * ( g ) h  = h (2.4) 

R * ( g ) k  = k (2.5) 

or in terms of the tensor lab, 

R * ( g ) l  = l (2.6) 

The condition (2.5) can be rewritten 

( R * ( g ) ) k g , ( X g l ,  Yg t )= kg,g(Xglg', Yg, g ' ) =  kg,(Xg,, Ygl) (2.5a) 
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where g, gl ~ G. Moreover,  X, Y are left-invariant vector fields on G. Thus, 
Xg = X ,  = X ,  Yg = Y~ = Y, and 

( R * ( g ) ) k g , ( X ,  Y ) =  k~,g(Xg',  Y g ' ) =  kg,(X, Y )  (2.5b) 

where e c G is a unit element of  G. 
In order to find h and k satisfying (2.4) and (2.5), we define a linear 

connection on G such that 

~ b  = --C"bcV c (2.7) 

Let the covariant differentiation with respect to 03~b be Vc and an 
exterior covariant different iat ion/) .  It is easy to see thht this connection is 
fiat, 

~% = dd~ % + r ~ ^ dJ Cb = 0 (2.8)  

with nonzero torsion 

6 '~ = D v "  = dv a +~'~b ^ V c =�89 b ^ v c (2.8a) 

and with a tensor of  torsion 

O~ = CObc (2.9) 

This connection is also metric. This means that the Kil l ing-Cartan 
tensor on the group G is absolutely parallel with respect to o3%. A parallel 
transport  according to this connection is a right action of the group G 
on G. 

One can easily find that (2.4)-(2.6) are equivalent to the condition 

f~l,b = 0 (2.10) 

Thus, in order to find h and k, we should solve (2.10) on the group G. 
Let us prove that the system (2.10) is self-consistent. 

In order to do this, let us consider the commutator  of  the covariant 
derivatives 

2 V [ r ~ k ] lcd = R bcrk lbd "3v R bdrk lcb + O Prk V plcd (2.11) 

Moreover,  o3% is flat and we get 

2V[r~ k ]lcd ~ OPrk ~ plcd ~ C Prk ~ plcd 
(2.12) 

~ vlc~ = 0 

which proves the consistency of (2.10). 
This result we can get using the equivalent form of (2 .10) ,  

Xftcd + l.aC~f + Ic.C~f = 0 (2.13) 
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It  is easy to see that  a bi- invar iant  tensor  h on G satisfies (2.13) iden- 
tically (for example ,  a Ki l l ing-Car tan  tensor) .  

Thus,  one gets for  a tensor  kab 

Vck,,b = Xckab + k,,bC~c+ k,,,Cbc = 0 (2.14) 

It  is easy to see that  if  kab satisfies (2.14), b .  kab satisfies this condi t ion 
as well for  b = const. 

In  the case of  an Abel ian  group,  k is bi- invar iant  on (3. 
The interesting case in our  theory is a semis imple  group  G. In  this case 

kab cannot  be bi- invariant .  The  only bi- invar iant  2-form on the semis imple  
Lie group  G is a zero form. Moreover ,  equat ion  (2.14) has always a solut ion 
on a semis imple  group  and  k is r ight-invariant .  Moreover ,  we suppose  that  
the symmet r ic  par t  o f  I is bi- invar iant  (left- and r ight- invariant)  and k only 
r ight- invariant .  

We can also define k in a special way,  

k(A, B) = h([A, B], V), A = AaXa, B = BaXa (2.15) 

where  

VcVd = 0  (2.16) 

is a covector  field on G (it is r ight- invariant)  and h is a V =  V d |  ~ 

Ki l l ing -Car t an  tensor  on G. 
In order  to become  more  famil iar  with the not ion of  a tensor  k, we 

find it for  the group SO(3) .  In  this case we have  lef t- invariant  vector  fields 

1 

sin 0 0 

1 
sin 0 0 (2.17) 

e~=cosqJ  - s i n g ;  c o t 0 0 q  ' 

0 ( o 
e 2 = s i n O ~ + c o s ~  cot 004 ' 

0 
e 3 - ~ - - -  

oo 

such that  

[ ea, eb] -= - - eabcec ,  a, b, c = 1, 2, 3 

0, ~b, qs are Euler  ang l e s - - t he  usual  paramet r iza t ion  of  SO(3) ,  

0<_0_<~r 

(2.18) 

0-<~0-<2~r (2.19) 

0_< ~b_<2~- 
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a n d  el2 9 = 1 a n d  eabc is a L e v i - C i v i t a  s y m b o l  (see  ref.  62). In  th is  case  o n e  

c a n  eas i ly  i n t e g r a t e  (2.16) a n d  f ind 

I11(0, r  4') = a ( c o s  r cos  4 ' - c o s  0 sin r s in  4') 

+ b s in  4' s in 0 - c (s in  r cos  4' + cos  0 cos  r s in 4') 

V2(O, r  4') = a ( s i n  4' cos  r + c o s  0 cos  4' s in r  
(2.20) 

- b cos  4' s in 0 + e ( cos  0 cos  r cos  4' - sin r s in 4') 

V3( O, r  4' ) = a sin C sin O + b cos O + c sin C sin O, a, b, c = const  

In  t he  s i m p l e r  ca se  a = c = O, b # O, o n e  gets  

F o r  

we  get  

/ 

V~ = b sin 0 sin 4' 

V2 = - b  sin 0 cos  4' 

V3 --- b cos  0, b = cons t  

kab=EabcWc 

(a sin 05 sin O+b cos 0 

+c sin 05 sin O) 

Cab = 
- ( a  sin r sin O+b cos 0 

+c sin 05 sin O) 

a(sin qJ cos 05 
+cos 0 cos q* sin 05) 
- b  cos ~O sin 0 

+c(cos 0 cos 05 cos q~ 

-sin 05 sin 4') 

-[a(cos 4, cos 6 

-cos 0 sin 05 sin g,) 
+b sin q, sin 0 

-c(sin 4, cos 4' 

+cos 0 cos 05 sin ~p)] 

I n  a s i m p l e r  case  fo r  a = c = 0, b ~ 0 o n e  gets  

O, b cos  O, 

kab = - b  cos 0, 0, 

b sin 0 cos  4', - b  sin 0 sin 0 sin 4', 

(2.20a)  

(2.21) 

-[a(sin qJ cos 05 \ 

+cos 0 cos q* sin 05) 

- b  cos 4' sin 0 

+c(cos 0 cos 05 cos ~0 

-sin 05 sin 4')] 

la(cos 05 cos 

-cos 0 sin 05 sin q,) 

+b sin 4, sin 0 

-c(sin 05 cos 4' 

+cos 0 cos 05 sin ~0)] 

0 

/ 
(2.22) 

- b  sin 0 cos 4'~ 
b sin ~ c o s  4' ) (2.22a)  
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Thus,  if we choose  for  h a Ki l l ing-Car tan  tensor  on SO(3) [this is a unique 
bi-invariant tensor  on SO(3)  m o d u l o  constant  factor]  

h.b = -26ab (2.23) 

we easily get 

/ab 

tz(,~ sin 05 sin 0 

- 2  +13 cos 0 

+3' sin 05 sin O) 

- 2  

- t z [ a ( s in  0 cos 05 \ 

+cos 0 cos ~ sin 05) 

-/3 cos 0 sin 0 

+3'(cos 0 cos 05 cos 0 

- s in  05 sin 0)]  

~[~(cos 05 cos 
- c o s  0 sin 05 sin ~0) 

+/3 sin ~O sin 0 

- 7 ( s i n  05 cos ~O 

+cos 0 cos 05 sin ~b)] 

~z[ee(sin ~0 cos 05 - / z [ a ( cos  05 cos 0 

l 
+cos 0 cos 0 sin 05) - c o s  0 sin 05 sin 0) 

-/3 cos qJ sin 0 +/3 sin 0 sin 0 - 2  i 

/ +7(cos  0 cos 05 cos 4/ - y ( s i n  05 cos 

- s i n  05 sin ~)] +cos 0 cos 05 sin 0)]  

(2 .24)  

where Iz = ~7 ( a2 + b 2 + c2) 1/2, ~72 = 1, a = a / tz, 13 = b / tz, y = c / l~. In  a simpler 
case, for a = c = O, b ~ O, one gets (absorbing/3  by # ) :  

- -2 ,  

lob = - t z  cos O, 
\ - / x  sin 0 cos O, 

cos O, /z sin 0 cos O\ 

- 2 ,  jz sin 0 cos O] 

/ - i x  sin 0 cos ~0, - 2  

For  an inverse tensor  1 ab such that 

we have 

labloc = lb'lc,~ = 6be 

I ab =__Aab 
A 

(2.24a) 

(2.25) 

(2.26) 
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where A = d e t ( l a b ) = - 2 ( 4 + / . 2 ) ,  Aab is a cofactor  matrix, and 

A la = 4 + / ~  2 sin 2 0 sin 2 ~b 

A ~2= - (2 /~  cos 0+ /~  2 sin 2 0 sin ~, cos ~b) 

A~3= (/~2 cos 0 sin 0 sin ~b- 2p~ sin 0 cos ~) 

A 21= (2/~ cos 0 _ / 2  sin 2 0 sin ~b cos ~b) 

A 22 = (4+/~  2 sin 2 0 cos 2 ~b) (2.27) 

A 23= - (2p .  sin 0 sin ~b+~ 2 cos 0 sin 0 cos ~b) 

A 3t = (/~2 cos 0 sin 0 sin ~b + 2/~ sin 0 cos ~,) 

A 32 = (2/~ sin 0 sin ~p - / 2  cos 0 sin 0 cos ~,) 

A 33 : (4q- /z  2 COS 2 0) 

In  the case o f  SO(3),  equat ion (2.22) is the most  general tensor  satisfying 
(2.5) except  for  a constant  factor  in front. Thus,  this tensor  is unique for 
SO(3)  modulo a constant  factor. 

In the case o f  any SO(n) one can find k and I similarly using Euler 
angle parametr iza t ion  and so for classical groups  SU(n), Sp(2n), G2, F4~ 
E6,  E7, E 8. In the case o f  solvable and ni lpotent  groups  we can also try to 
find bi- invariant  skew-symmetr ic  tensors. 

Finally, we suggest a general  form of  the tensor  kab on a semisimple 
g roup  G, i.e., such that  equa t ion  (2.4) is satisfied. The solutions o f  equat ions 
(2.10) and (2.14) are as follows: 

lab(e c )  = la ,b , (e)(eAd'C)a' (ead'c)  b" 

and 

One  writes 

k~b(e c) = ka,w(e)(eAd'C):'(eAa'C)~ 

kob(g)=L,b,U~ g, e G (2.28) 
where U(g) = A d o ( g )  is an adjoint  representat ion o f  the g roup  G. It is easy 
to see that  for  (2.28) we have 

f~k~b = 0 (2.29) 

f~b = --fab = const  (2.30) 

and it is defined in the representat ion space o f  the adjoint  representat ion 
o f  the g roup  G. In the case o f  the group SO(3)  one has 

f~b = eabcfc (2.31) 

kab = 6abcVc (2.31a) 
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and 

Va =fc, UC'~ (g) (2.32) 

If we choose fc = (0, 0, b), we get equation (2.20a). Moreover, it is always 
possible because an orthogonal [SO(3)] transformation can transform any 
vector f into (0, 0, ~:[[f[[), where [[f]] is the length o f f  The semisimple Lie 
group G can be considered a Riemannian manifold equipped with a 
bi-invariant tensor h (a Killing-Cartan tensor) and a connection induced 
by this tensor. This Riemannian manifold has a constant curvature. Such 
a manifold has a maximal group of isometries H of dimension �89 + 1), 
n = dim G (see ref. 59) (the isometry is here understood in the sense of the 
metric measured along geodetic lines in Riemannian geometry induced by 
a Killing-Cartan tensor). This group is a Lie group. It is easy to see that 
for G =  SO(3) we have H = S 0 ( 3 ) |  and dim S 0 ( 3 ) |  =6,  
dim SO(3)=3 .  The group SO(3) leaves the Killing-Cartan tensor hab 
~nvariant, 

ha 'b 'Aa 'aAb 'b  = h~b (2.33) 

where A ~ SO(3). 
Moreover, fob has exactly three arbitrary parameters and solutions of 

equation (2.14) have the same freedom in arbitrary constants. This suggests 
that the tensor (2.28) could be in some sense unique modulo an isometry 
on SO(3) and a constant factor b. In this case the classification of kab tensors 
on SO(3) could be reduced to the classification of skew-symmetric tensors 
f~b with respect to the action of the group SO(3). In general the situation 
is more complex, because SO(n),  n = dim G, does not leave the commutator 
(Lie bracket) invariant. 

Let us suppose that G is compact. In this case we should find all 
~nequivalent fab tensors with respect to an orthogonal transformation A c 
SO(n). It means we should transform f~b to a canonical form via an 
orthogonal matrix, i.e., 

(fab ) = f ~ f '  = (f'~b) = A rfA = A-~fA (2.34) 

For skew-symmetric matrices we have the following canonical forms, the 
so-called block-diagonal matrices: 

'ol _~:1 0 (3 

f =  
0 

(3 _~:,~ 

(2.35) 
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o r f o r  n = 2 m + l  

0 

f= 

0 
�9 

(2.36) 
0 ( "  0 

0 - ( "  0 0 

0 0 0 

where ~1, ~2 , . . . ,  ~,, are real numbers. In order to find them, we should 
solve a secular equation for f 

det(Izln - f )  = / n  + a l ( f ) /  n-E_+_ a2(f)l.6n-2+... 
(2.37) 

[In = ( ~ j ) i , j = l , 2  . . . .  ] 

The coefficients al ,  a 2 , . . ,  are invariant with respect to an action of the 
group O(n) [SO(n)] and they are functions of  ~:1,.. . ,  ~:m. Thus, in the case 
of  a compact semisimple Lie group, the skew-symmetric tensor kab on G 
is defined as 

k,b(g) = b. fa,b,Ua'a(g) Ub'b(g) (2.38) 

where b is a constant real factor and (lab) = f  is given by 

0 1 

- 1  0 
O 

0 s r 
f = A  r _r 0 A (2.39) 

for n = 2m, or 

0 ~rrl-- 1 
�9 

- ~ " - 1  0 

0 1 

-1  0 

0 ~ 
__~1 0 

�9 
0 

__~m--1 

�9 

~m 1 

0 

A (2.39a) f = A  r 

for n = 2 m + 1 .  
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Suppos ing  that h~b = diag(A~, A2, �9 . �9 , An) , where n = 2m or n = 2m + 1, 

one gets 

Lb(e) = A  ~ 

= AT~(e)A  

for  n = 2m or 

~1 A2 

~b(e) = A  T 

A3 ~:2 

__f2 /~4 

. . . .  
~ 

�9 

A2m_ 1 ~m 

_~m A2m 

A 

(2.39*) 

AI 

= ATL e )A  

for n = 2 m + l .  

A2 

A3 
_~2 

�9 

~ 2 

h4 

�9 

A2m_ 1 ~rn 

__~,m A2 m 

A2:n+l 

A 

2.39a*) 

Moreover ,  if G is compact ,  we have hi = A, i = 1, 2 , . . . ,  n, and h < 0 .  
This is because  any bi-invariant symmetric  tensor  is propor t iona l  to the 
Ki l l ing-Car tan  tensor. In particular,  the Tr tensor  commonly  used in Yang-  
Mills theory  is propor t ional  to hab. Thus, hab = h (Tr)~b = hGb, h < 0. [For  
a part icular  normal izat ion o f  generators Tr({Xa, Xb}) = 28ab.] Let us remark 
that, in general,  if k~b(e) and h~b commute  (for now I do not  suppose that 
G is compact) ,  we have lab(e)= (A -1T(e)A)ab, where A c Gl(n, R) and 

l~6(g ) = U~'~(g) Ub'b(g)( A - '  l( e )A  )a,b, 

One can say, of  course,  that  kab, tensors are defined with more  arbitriness 
than bi-invariant,  symmetr ic  tensors. This is because k is only right-invariant. 

Let us notice that 

Jab = k~b(e) (2.40) 
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(e is a unit element of G) and 

Rg,kab(g) = kab(gg') = kcd(g ) UCa(g ') Udb(g ') (2.41) 

where g, g ' e  G. 
In the case of G =  SO(3), kab is unique up to an isometry of the 

Riemannian manifold with the bi-invariant tensor as a metric tensor and a 
constant factor. This suggests that the kab tensor given in the form (2.15)- 
(2.16) and (2.31)-(2.32) is an analogue of the Killing-Caftan tensor for k~b 
(skew-symmetric). Moreover, the vector f can be transformed by an 
orthogonal [ O(n)] transformation into 

(0, 0 , . . . ,  +1[/[[) (2.42) 
n t i m e s  

Thus, one gets 

k a b ( g ) = b  ~ ~ ~' �9 Cabfc, Uc (g) (2.43) 

where b is a constant factor and 

(TO,) = / o  =(0,  0 , . . . ,  1) (2.44) 

n t i m e s  

Thus, we can write k in a more compact form 

k ( A ,  B)(g) = b . h([A,  B], Adgf ~ (2.45) 

where A = AaXa,  B = BaXa. 
Using the bi-invariancy of the Killing-Cartan tensor, one can write 

k ( A ,  B ) (g )  = b.  h(Adg- ,[  A,  B ] , f  ~ (2.45a) 

Moreover, if there is ff c G such that ~2 = g, we get 

k (A ,  B)(~ 2) = b. h(Ad~-,[A, B], Ade f  ~ (2.46) 

We find the interpretation of the factor b for K given by formulas (2.45)- 
(2.46). One gets 

k a b k  ab = h a a ' h  b b ' k a b k a , b  , = b =llAdgf~ = b 2 (2.47) 

Thus, we have 

b = "4- (kabkab)  ' / 2  (2.48) 

Finally, let us note that we can repeat the considerations changing right 
(left)-invariant to left (right)-invariant everywhere. In this case we can 
consider a left-invariant 2-form k and a left-invariant nonsymmetric tensor 
on a Lie group G. 
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3. THE NONSYMMETRIC METRIZATION OF THE BUNDLE P 

Let us in t roduce the principal  fiber bundle  19 over the space-time E 
with the structural g roup  G and with the project ion ~r. Let us suppose  that  
(E, g) is a manifold  with a nonsymmetr ic  metric tensor  o f  the signature 
( , , , + ) ,  

g~- = g<~)+ g t ~ l  (3.1) 

Let us in t roduce a natural  frame of  _P, 

0 A = (~'*(ff~), 0 a = Atoa), X = const (3.2) 

It is convenient  to in t roduce the following notations.  Capital  Latin indices 
A, B, C run over 1, 2, 3 , . . . ,  n + 4 ,  n = d i m  G. Lower  case Greek indices 
are a, /3, y, 8 = 1, 2, 3, 4 and lower case Latin indices are a, b, c, d = 5, 
6 , . . . ,  n + 4. The bar  a top 0 4 and over other  quantities indicates that these 
quantities are defined on E. 

It is easy to see that the existence o f  the nonsymmetr ic  metric on E is 
equivalent  to in t roducing two independent  geometrical  quantities on E, 

= g~ff~ | ff~ = g(~)ff~ | ff~ (3.3) 

_g = g~off~ ^ ff~ = gt~o~ff ~ A ff~ (3.4) 

i.e., the symmetr ic  metric tensor  g on E and 2-form g. On the group G we 
can in t roduce a bi-invariant symmetric  tensor  called the Ki l l ing-Car tan  
tensor,  

h(A,  B) = Tr(Ad~ o Ad~) (3.5) 

where A d ~ ( C )  = [A, C] (it is tangent  to Ad, i.e., it is an "infinitesimal" Ad 
t ransformat ion) .  It is easy to see that 

h(A,  B) = habA a. B b (3.6) 

where 

ha b : c d a C adC be, hab = hba , A = A Xa, B = B'~Xa 

This tensor  is dist inguished by the group structure, but  there are o f  course 
other  bi- invariant  tensors on G. Normal ly  it is supposed  that  G is semi- 
simple. It means that de t (hob)#  0. In this construct ion we use l~ab)= hob 
(the bi- invariant  tensor  on G) in order to get a proper  limit (i.e., the 
non-Abel ian  Ka luza -Kle in  theory) fo r / z  = 0. 

For  a natural  2-form k on G, or a natural  skew-symmetr ic  right-invariant 
tensor, we choose  k described in Section 2; k is zero for  U(1).  Let us turn 
to the nonsymmetr ic  natural  metrization o f  _P. Let us suppose  that 

~,(X, Y)  = ~,(Tr'X, 7r' Y)  + A 2 p 2 h ( o ) ( X ) ,  to(Y))  (3.7) 

T_(X, Y )  = g_(7"r'X, ~" Y)  + txA2p2k(to(X), to (Y ) )  (3.8) 
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/~ =cons t  and is dimensionless, X, Y c T a n ( P ) ,  and p = p ( x )  is a scalar 
field on E. The first formula  (2.9) was introduced by Trautman (in the 
case with p = 1) for the symmetric natural metrization of  P and it was used 
to construct the Kaluza-Kle in  theory for U(1) and non-Abelian generaliz- 
ations of  this theory. It  is easy to see that 

"y = ,a'* g, ~) p2 habOa @ 0 b (3.9) 

y_ = 7r*g_ + #p2kabO " ^ 0 b (3.10) 

or  

For 

one easily gets 

3"[AB] ( flll.zflOkab) 
TAB : 3,(AB) + 3,[AB] 

(3.11) 

(3.12) 

0 

where 1,~b = h,b + I.Lkab. Tensor 7A8 has this simple form in the natural frame 
on P, 0 a. This frame is unholonomical ,  because 

dO '~ = ~ ( H ' ~ , , , O ~ ' ^  0 " - ~ 5  CabcObA 0 c)  5 0  (3.14) 

3' is invariant with respect to the right action of the group on _P. In the case 
with kab = 0 we have 

3"AB=(gOfllp2Ohab) (3.15) 

For the electromagnetic case [ G - -  U(1)] one easily finds 

3'a._ I O=) (316) 
Now let us take a section e : E  ~ _1:' and attach to it a frame v ~, a = 5, 
6 , . . . ,  n + 4 ,  selecting X "  = const on a fiber in such a way that e is given 
by the condition e*v  a = 0 and the fundamental  fields ~ such that v~(ffb) = ~ 
satisfy [fib, ffa] = ( 1 / A ) C C a b f f c  �9 Thus, we have 

to = 1 v"X,,  + "rr*(A~ 
A 
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where 

e*o) = A = A " , f f ~ X , ,  

In this frame the tensor y takes the form 

yAB = (g,~t3 + A 2p21abAa Abl31Ap21cbA~ ~ 
Ap21a~A~t3 p21ab J 

where 

303 

(3.17) 

habh bc = 8ca (3.20) 

Thus, one easily finds in this case 

,)I Ac yBC = YCA yCB = ~B (3.21) 

where the order of indices is important. We have the same for the electromag- 
netic case [G = U(1)]. In general, if det(/ab) ~ 0, then 

lab l"c = lb,~l ~'~ = 8; (3.22) 

where the order of indices is important. From (3.22) we have (3.21) for the 
general nonsymmetric metric 3,. 

It is easy to see that 

~ ' (g )~  = 
(3.23) 

~ " ( g ) ~  = v 

and 3'AB is an invariant tensor with respect to the right-action of the group 
Gon_P.  

and 

lab = hab + ~kab 

This frame is also unholonomic. One easily finds 

dv"  - 1  vC = - -  CabcV b ^ (3.18) 
2A 

The nonsymmetric theory of gravitation uses the nonsymmetric metric g~.~ 
such that 

g ~ g ~ "  = g ~ g ~  = 8r (3.19) 

where the order of indices is important. If G is semisimple and k,b = 0, 

lab = hab ,  det(hab) ~ 0 
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In the case of  any  Abel ian  group  the condi t ion (3.23) is s t ronger  and 
we get that  3JAB is bi- invariant .  Thus,  in the case of  G = U(1) (e lec t romag-  
netic case) 

where  SeA is a dual  base  

A, B =  1, 2, 3, 4, 5, and  

~:5"P = 0 = ~sy (3.24) 

oA(~B) = ~A ( 3 . 2 5 )  

~A ----- (~:,, ~:5) (3.26) 

Let us come back  to the connec t ion  o3% defined on the g roup  G. For  
a typical  fiber d i f feomorph ic  to G, we can define O3~b on every fiber Fx -- G, 
x ~ E. Due  to a local t r ivial izat ion of  the bundle  P, we can define o3% on 
every set U x G, where  U c E and  is open.  Thus,  we get a l inear  connec t ion  
on P such that  

~AB = (~ [ __(a/ A ~CabcOC) (3.27) 

def ined in a f rame  0 A = (~r*(ff"), 0~), where  0~ is a f rame on E and 0 ~ is 
a hor izontal  lift base.  

This connec t ion  can be examined  in a sys temat ic  way. Let us in t roduce 
a metr ic  on P in the fol lowing way: 

p =- " B ' * ~ @ h a b O a @ O  b (3.28) 

where  ~ = r / . ~ 0 " |  ff~ is a Minkowski  tensor  and  bah is a Ki l l ing -Car tan  
tensor  on G. One gets 

{ ~ _ z ~ _ _ ~ ]  and  p A B _ { ~ ' ~  PAB = \ 0 [ hab/ -- ~ 0 I h ~b] (3.29) 

The  connec t ion  o3A~ can be def ined as 
A 

Am (q7"$O a/3 I 0 ) ( 3 . 2 7 a )  s B ~ .4.~ ,'~a 
tllxO') b l  

where  to~r is a trivial connec t ion  on the Minkowski  space,  o)% is the 
connec t ion  defined in Sect ion 2, and  qS~ is a d i f feomorph i sm qS~ :F~ ~ G, 
x~U. 

It is easy to check tha t  

L)PAtJ --- 0 = l ) p  AB (3.30) 
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AA w h e r e / ~  is an exterior covariant  differential with respect to ~, B. One can 
,*A easily calculate the torsion for to ~, 

"~a 
Q ,~ = h H ' ~  (3.31a) 

~a 1 
Q b~ = ~  C"b~ (3.31b) 

and the curvature tensor  
^ a  

R b,v = A X b H a ~  (3.32) 

(the remaining torsion and curvature components  are zero). The connect ion 
o3AB is neither fiat nor  torsionless. Moreover ,  it is still metric as a connect ion  
~ab f rom Section 2. 

The covariant  differentiation with respect to this connect ion is con- 
nected to the right act ion o f  the group G on _P. Thus, the condi t ion o f  the 
right-invariance o f  the p - fo rm --'~A'"'A'B 1...B~ on _P is equivalent to 

~ a=AI '"A '  t3t.,.Bm = 0  ( , . , 3  j 

where Vk is a covariant  derivative with respect to 03A8 in vertical directions 
on P. This means right-invarianee of  ~.  This can be written 

^ 
~Tver(x)~. ~--- 0 (3.33a) 

ver is unders tood  in the sense o f  w. 

q~'(g)E = ~" (3.34) 

where g e G and 

"~ = (EAI'"AIBI'"Bm) = (pb,B[pBzB 2 �9 �9 �9 P B . . . .  B 'n=Al"'al~ BI'"B,'n)" 

For  a connect ion  ~o on a bundle  _P, with curvature f~, one gets 

fktO = fkf~ = 0 (3.34*) 

Thus,  we can rewrite equat ion (3.23), 

f ~ ' / = ~ o ~ = 0  (3.35) 

This means that 

o r  

~a~/AB = 0 (3.36) 

^ 
Vver(x)3' = 0 (3.36a) 

For  every linear connect ion  (DAB defined on _P compatible  in some sense 
with "/AB we get 

~ * ( g ) O ) A B  = mdgtOAB (3.37) 
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which means that toAB is right-invariant with respect to the right-action of 
the group (3 on _P. We say the same for a 2-form of torsion and 2-form of 
curvature derived for toAB, i.e., 

" A Vaf~ ~ = ~aO A = 0 (3.38) 

The curvature scalar is invariant with respect to the right-action of the group 
(3 on P, 

0 = VoR = XaR = ~,R (3.39) 

The condition (3.37) is the same as in the classical Kaluza-Klein  (Jordan-  
Thiry) theory in a non-Abelian case. A parallel transport  with respect to 
the connection o3AB means simply a right-action of  the group (3 on P. 

Our subject of  investigation consists in looking for a generalization of 
the geometry from Einstein's unified field theory (the so-called Einstein- 
Kaufman  theory; (see refs. 4, 5, and 61) defined on _P i.e., for a connection 

A to ~ such that 

D'yAt~ = ")/ADQDBE OE (3.40) 

where D is an exterior, covariant differential with respect to the connection 
A and QDBE is a tensor of  torsion for toaB. We suppose that this to B ,  

connection is right-invariant with respect the right-action of the group (3. 
We can write equations (3.37)-(3.39) for a torsion, curvature, and a 

scalar of  curvature for toAB. In this way we consider an Eins te in-Kaufman 
(3-structure on the bundle of  linear frames over the manifold P (i.e., a right 
(3-structure). 

We can repeat all the considerations changing right (left)-invariant into 
left (right)-invariant in all places. 

In Appendix A we consider in more detail the invariance properties 
of  the connection o.)AB from a different point of  view. 

In this section we define t o A  as a collection of 1-forms defined on the 
manifold P (a gauge bundle manifold) and we choose for t o a  a lift 
horizontal frame (connected to the connection to on the gauge bundle). 
The collection of  1-forms toAB becomes a linear connection on 19 iff it 
satisfies the following transformation properties: 

where 

and 

to'A'B,=~, IA'A(p)toABS, IBB,(p)--~,--1A'A(p)d~,AB,(p) ( 3 . 4 1 )  

Y~(p)~ G L ( n + 4 ,  N), p ~  Upc  P 

0 c = Ec,,(p)0'c' (3.42) 
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is a simultaneous transformation property of  a frame. Having (.oAB with 
transformation properties (3.41)-(3.42), we can lift it on a principal fiber 
bundle of  frames over _P with the structural group GL(n +4,  R), getting a 
1-form of  connection o3, 

o3z = AdGt(n+g,R)(gpl)[I-[*(toABXBA) -- g~l dgv] (3.43) 

where II is a projection defined on this principal fiber bundle of  frames and 

gp: z~l'I-l(Up)~gp(Z)=(prcL(,+4,R)~p(Z))-l~Gl(n+4, R), pc  UpC P 

pr means a projection on Gl(n + 4, •) in a local trivialization of the bundle 
P", �9 is an action of GL(n +4,  E) on a principal fiber bundle of  frames 
over P, �9 ~ Gl(n + 4, E) x P" ~ P", and Up is defined for Gl(n + 4, R) x Up. 
In this way we have an action of GL(n +4,  R) on the bundle and for o3, 

a.tt*(g)o3 = AdGL(n+4.n)[g-1]o3 (3.44) 

XaB are generators of  the Lie algebra g / ( n + 4 ,  R) of  GL(n+4, N) and 
gE Gl(n+4, R). 

For a soldering form ffa one gets 

~A ~_ gpii.( O A) (3.45) 

Taking any two sections of  the principal fiber bundle of  P" frames E and 
F such that 

E* O3 = O.)'A'B,XB'A , 
(3.46) 

F* o3 = w A B X  BA 

E*~ A = o'A 
F*~A= oA (3.47) 

one gets the transformation properties (3.41) and (3.42). In such a way that 

E(p) = F(p)E(p) (3.48) 

equation (3.40) can be rewritten in a more compact  form 

V 3' = S (3.49) 

where 

s(x, V,Z)=[Tr(~,| Y, Z)=E ~(X, eA)OA(Q(V,Z)) 
A 

Q( Y, z )  = -Q(Z ,  Y) 

is a torsion of the connection O3; X, Y, Z are contravariant vector fields; 
and O A, e~, OA(eB) = 6AB, are dual bases. 

Or, in a different form, 

Vzy(X, Y) = S(X, Y, Z) (3.50) 
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V is a covariant derivative with respect to the connection o3 on the fiber 
bundle of  frames. 

Moreover,  now we consider % Q, X, Y, Z, etc., as geometrical objects 
living on appropriate  associated fiber bundles to the fiber bundle of  frames. 
The condition (3.50) gives us the Eins te in-Kaufman connection o3 on the 
principal fiber bundle of  frames over P. For O3 right-invariant with respect 
to the action of group G on this bundle of  frames (lifted to this bundle 
from P; see Appendix A for more details) the condition (3.50) is also 
right-invariant. 

4. F O R M U L A T I O N  OF T H E  N O N S Y M M E T R I C  
J O R D A N - T H I R Y  T H E O R Y  

Let P be the principal fiber bundle with the structural group G, over 
space-time E with a projection 7r, and let us define on this bundle a 
connection w. Let us suppose that G is semisimple and that its Lie algebra 
is ft. On space-time E we define a nonsymmetric  metric tensor such that 

g ~  = g(,~) + g [ ~  
(4.1) 

g ~ g V ~  = g~,~g~V = 8~,o, 

where the order of  indices is important.  We define also on E two connections 
- o e  03~ and W ~, 

o3 ~ = P ~ O ~  (4.2) 

and 

where 

- -  - c ~  2 e ,  a , r i ' r  
WRY/3 = to  /3 - ~ o  1 3 w  

(4.3) 

~ 0 ~ = � 8 9  - ~  _ - ~  -~ = W ~ W ~ ) 0  

For the connection O3~ we suppose the following conditions: 

Z3g~+~ = D g ~  - g o a 0 % ( r )  0 ~ = 0 
(4.4) 

0 % ~  (P) = o 

where D is the exterior covariant derivative with respect to O3~ and ( ~ r ( P )  
is the torsion of 03 ~ .  Now let us turn to the natural nonsymrnetric metrization 
of the bundle P. According to Section 3, we have 

= ~ * ~ , O p e h a 6 0  a 0 b = ,n-*(g(o,13)ffa@ff~)(~pahabOa(~)O b 
(4.5) 

3/= ~*g(~p2 l .ZkabOa A 0 b * -o~ 0 b _ _ = r r  ( g [ ~ / 3 ] 0  ^ f f~)@p2t.ZkabOa A 
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where 0 ~ -- hto ~. In Appendix A we consider a more general structure and 
give a justification for this special form. From the classical Kaluza-Kle in  
theory and Jordan-Thi ry  theory (with symmetric metric) we know that h = 2 
(refs. 1, 16, 17, and 58). We have 

(vl ;,9  46, 
where 

lab = hab q" [zkab 

We suppose l(ab) = h~b (the bi-invariant tensor on G) in order to get a 
proper  limit for the Yang-Mills  Lagrangian fo r /z  = 0. It is worth noticing 
that our results are valid for an arbitrary right-invariant nonsymmetric  
tensor lob. 

Let us suppose that de t ( / ,b)#  0. Now we define on P, a connection 
toAs (right-invariant with respect to the right action of the group G on P)  
such that 

D'YA+ B_ = D T A B  -- ' Y A D Q D B c  ( F ) 0  C -- 0 (4.7) 

where 

and 

A r B ='~ " t aBc  uc 

qb'(g)WAR = Adgo)Am g e G 

D is the exterior covariant derivative with respect to the connection O)*~B 
and Q D B c ( F )  is the tensor of  torsion for the connection toAB. Equation 
(4.7) means the compatibility condition in Einste in-Kaufman sense, qb'(g) 
is a right-action of the group G on P. After some calculations one gets 

Fd/3v = Ld•v 

Ft~vb = -- p 2 1 c l b g ~  L d v 

F~*av = p21~dg~*~(2Hd ~ -- Ldvr  

F~ac = N a a c  
(4.8) 

F~ 1 scb -- - -  1 ab oec 2 g~'a N 
p 

1 
Fbc~ = -- ~ ga[flab Naac 

P 
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where Ld,+, NPcb are Ad-type tensors on P such that 

(p2),vlab + ( ldbledg~,N~ea + ladldegv~N~be ) = 0 (4.9) 

ld~g~t~g'~Ld~ + l~dg~g~VLd~, = 21~dg~,g~'Hdt3 v (4.10) 

and I'"b~ satisfies the compatibility conditions: 

tdbI'da~ + ladFd~b = --ldbCdac (4.1 1) 

The connection 03ab = I'ab~O~ is defined on a typical fiber. According to 
our assumptions, ta"b is a right-invariant form on P. l~b~ in the lift horizontal 
basis has a tensorial transformation law (see Appendix A). 

This means that 

dP*(g)~ab : Adgo~ab (4.12) 

or in coordinate language 

Xk I'dab "~- Ceak I'deb -~ Cebk Fdae -- Cdek Feab = 0 (4.13) 

Using notations from Section 1, we can write equation (4.13) as 

~krdab : 0 or ~kC-Oab = 0 (4.14) 

and similarly 

Vkl,,b = 0 (4.15) 

We can write for Fa~b the following: 

Rg,(Fa~b(g)) = Fa~b(gg' ) = Udd,(g '-1) U ~ ( g  ') Ub't,(g')Fa'c,b,(g) (4,16) 

This allows us to write for Fa~b(g) the general formula 

I'dcb(g ) = Udd,(g -1) UC'c(g) Ub'b(g)~-~d'c,b , (4.17) 

where 

od'~,b, = I'd'~,b,(e ) (4.18) 

and is defined in the representation space of the adjoint representation of 
the group G. We now derive the following condition for lid's,b,: 

(hdb+tZfdb)~do~+(had+lXfod)12dcb=--(hdb+tZfdb)Cda~ (4.19) 

For example, we can take fad = Ck%d, where ko is an established index. 

5. GEODETIC EQUATIONS 

Let us write an equation for geodesics F c P with respect to the 
connection r on _P, i.e., Vuu = 0, or 

UBV~uA=O (5.1) 
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where u, (uA(t)) is a tangent vector to the geodesic line, and V means 
covariant derivative with respect to the connection ~oaB. Using equation 
(4.8), one easily finds 

b u  ~ 
~_ ut3(u~p2)[l~dg.a(2Hat3 ~ _ Ld ) _  le~g~Ld t3] + b . . . .  u u l , ~  ~b=O (5.2) 

dt 

d u  a t- u~ u r L ~v# - 4  u # u C ( ga#Iba N ~bc + gf3flab N acb ) + u b u cr~acb ~- 0 (5.3) 
dt 0 

One easily transforms (5.3) into 

12 d(peu") 2 p,~ut~u. 
p dt p 

1 
- p--5 ut3u~(g~tflb~N~bc + g~l~bN~b) 

"~-u b u cI'acb 31- ueu rL O~t~ = 0 (5.4) 

o r  

where 

1 d(p~u ~ - ) 
p2 d ~  ~- ubuCF"r + ut~u~LO~r 

1 2 ~ a C 
- ' -5  [(P ).~ u"8 cU + U~U~(g~lb~N~b~ + g~fl"bN~b)] = 0 

P 
(5.5) 

and 

(p 2),~ut~6acuC + U~UC (gaflbaN6h~. + g~flabN~b ) = 0 (5.9) 

Using (5.9) and (4.9), we easily get 

= _ng.~sP) . N~.~ v~ p,t3t.~ = Fa,~ (5.10) 

dp= 
dt P'~U~ (5.6) 

D / d t  means covariant derivative with respect to o5~t3 along the line to which 
u~(t) is tangent. In the symmetric Kaluza-Klein theory or in a five- 
dimensional Jordan-Thiry theory, 2p2u b (see Section 3 and ref. 22) has the 
interpretation of (qb/mo) for a test particle (qb is the color or isotopic 
charge of the test particle) and the system of equations (5.1)-(5.3) has the 
first integrals ubp2= const. In our case it is possible iff 

L~p~ = -L"~,  (5.7) 

~"cb = f'%c (5.8) 
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where 

g(~~ is an inverse tensor for g(~o) and 

1 
F%~ = - g~8~,(~) p,~8'~ c 

P 

- p  

Using (5.10), (5.7), and (5.8), we transform (5.4) and (5.5) into 

Ou--~+dt uS Icdg~Hdr --'2 ( lcdg'~ -- l&g ~'~)Ld~'~ 

l ~,(~)p~(hb~qbq______~]=O 
4p 3 ' \ mo / 

(5.11) 

(5.12) 

(5.13) 

d ( q a ~  =0  (5.14) 
dt k too~ 

o r  

8m 2 g ~Z ,~ = 0 (5.15) 

at\~oo] =0  (5.16) 

[q/mo=2~(ver(u(t))); see Appendix B], where Ilqff =(--h~bqaqb) ~/2 is a 
length of color (isotopic) charge in the Lie algebra g of the group G [in 
color (isotopic) space]. [[q[[2 is positive defined if G is compact. Usually 
hab (the Killing-Cartan tensor) is negative defined in the case of semisimple 
compact Lie algebras. It seems that [] q ]12 could be connected to the Casimir 
operator of some representations of the group G. If p = const (= 1), we get 
the equation 

d~---2Ub Ibdg~Hd~v-- (Ibdg~--lubg~)La~v U ~ / = O  

(5.17) 
du b 

=0  
dt 
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This equation, in the case of  the symmetric metric g~o = go~, l~b = hab = hba, 

turns into 

/~U a 
dt - 2 u bhbag'~t3 Hd f3vu  V = 0 

(5.18) 
du b 1 

=0,  - - =  2 ver(u( t ) )  
dt mo 

Sometimes it is convenient to consider q as an element of  the Lie algebra 
of  (3, (g). In this case we define 

q = qaX~ = 2mo[~(ver(u( t ) ) )]~Xa 

Equation (5.17) is called the Wong equation (see refs. 7 and 92) in the 
case of  G = SU(2) and contains the Lorentz force term for the Yang-Mills 
field. From the historical point of  view this equation should be called rather 
the Kerner equation, because it appeared for the first time in Kerner 's  paper  
(see ref. 7) in curved space-time for an arbitrary semisimple gauge group. 
Thus, we get in the first equation of (5.17) a Lorentz-like force term in the 
case of  the nonsymmetric  metric for an arbitrary gauge field. Our equation 
(5.13) or (5.15) contains two more terms. The first term 

1 (  q ~  u~ ( l c d g ~  _ i d c g ~  ) LdI~ ~ (5.19) 
2 \ mo/  

is known from the nonsymmetric  non-Abelian Kaluza-Klein  theory and it 
vanishes if both metrics on space-time g,~ and on a typical fiber l,b become 
symmetric. The second term, 

11 11 
2 ~(~/3) 

8 mo P /,8 

describes interaction with the scalar force for the test particle. 
Thus, we formulate the following theorem. 

Theorem I lL  
1. Let conditions 1-4 from the Theorem I be satisfied and let P = p2L 

T - -  ! 1  a t3P" v 2. Let there be an Ad-type field of  2-forms on P, ~ -  Eat., txvt, A 0 Xa, 
with values in the Lie algebra of  G, (g), such that (4.10) is satisfied. 

-- p - -  _ l F a  ~ b  c 3. Let there be on P an Ad-type field of  2-forms, ~ -  2~ bc~ A 0 X~, 
with values in the Lie algebra of  G such that (4.11) is satisfied. Then there 
is one and only one connection 03 on the bundle of  frames over P such 
that the geodetic equation with respect to it possesses n first integrals of  
motion that are Ad-type quantities on P (a gauge bundle). 
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In order to understand better  the physical content of  geodetic equations, 
we should project it on a space-time E. In the electromagnetic case it is 
very easy because F,~, H ~ ,  and p are well defined on a space-time/5. This 
is of  course true in any Abelian case. In a general non-Abelian case we 
should reformulate them in a gauge-dependent  manner.  Let us consider a 
section f :  E ~ _P [i.e., f ~  r ( f ) ] .  We can define a gauge-dependent  projec- 
tion, t ~ g ( t )  ~ G, of  a curve, t ~ X ( t )  [given by equations (5.15)-(5.16)] 
such that 

X ( t) = r ( f (  t) )g(  t) (5.20) 

and define gauge-dependent  quantities 

F ~  = f *  H ~  (5.21a) 

B~,~ = f * L ~ . ~  (5.21b) 

We easily get 

H a , ~ ( X ( t ) )  = U a a , ( g ( t ) - l ) F a ' ~ ( f ( t ) )  (5.22a) 

L a ~ ( X (  t) ) = U ~ , ( g (  t ) - l ) B a ' ~ ( f (  t) ) (5.22b) 

where U is an adjoint representation. Let us define similarly as in ref. 9 a 
gauge-dependent  charge Q, 

Qa( t )  = U~ . , (g ( t ) - l )q  "' (5.23) 

[Q( t )  = 2too A d G ( g ( t ) - l ) x ( v e r ( u ( t ) ) ) ;  see Appendix B]. Then let us define 
a gauge-dependent  tensor m.b, 

m~b( t) = U~' , (g(  t) ) Ub'b(g( t) )l~,b ' (5.24) 

Then the geodetic equations (5.13) and (5.14) can be rewritten in an 
equivalent form 

+ ut3Lm~ag F --ma~g~'~)Bdt3~ 

llOll: .(~){ 1 g =0  (5.25) 
8- o 

dQ ~ .-, . . . .  b 
t~ cbt/ ~ ~U = 0  (5.26) 

dt 

where f ' c o  = Ab~,O"Xb is a four-potential.  
Sometimes it is convenient to consider Q as an element of  the Lie 

algebra of  G. In this case we define 

Q( t ) = Q"(  t )X~ = e* q = 2mo[ A d G ( g - ' (  t) )~ (ver (u(  t) ) ) ]"X.  
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Thus, we get the gauge-dependent form of a generalized Kerner-Wong 
equation. The second equation, i.e., (5.26), is exactly the same as in the 
symmetric Kaluza-Klein theory and should be called the Kopczynski 
equation, for it appears for the first time in ref. 9. The gauge-dependent 
charge Q is covariantly constant and in general not constant in non-Abelian 
theories. The gauge-independent charge q is constant in Abelian and non- 
Abelian theories. It is a first integral of motion. For this we will examine 
the general properties of geodetic equations as equations of motion for a 
test particle using equations (5.15)-(5.16). Let us calculate the length of a 
gauge-dependent charge 

IIQl?=-ho~Q~ ~ 

= -ha,b, Ua 'a (g ( t )  -1) U b ' b ( g ( t ) - l ) q a q  b 

= - h , b q ~ q  b = ]1 q ]12 (5.27) 

Thus, the gauge-dependent charge has a constant length. This result can be 
obtained directly from equation (5.26). 

Let us consider the equation V,(ou(t ) = 0 in a more geometrical way 
i.e., for horizontal and vertical parts of u ( t )  [horizontality is understood in 
a sense of the connection to on _P (a gauge bundle)]. One has 

One gets 

hor(V.(ou(t)) = 0 

ver(V~(,)u(t)) = 0 
(5.3,) 

hor(Vu(,) hor(u( t ) )+ Vu(t)ver(u(t))) = 0 
(5.3**) 

ver(V(,> ver(u(t)) + Vu(,) hor(u(t))) = 0 

and 

hor(Vhor(u(O) hor(u(t)) + Vver(u(,)) hor(u(t)) + Vver(u(,)) ver(u(t)) 

+ Vhor~ u(,))ver(u(t))) = 0 

ver(Vhor(u(o) ver(u(t))--1-~Tver(u(t) ) ver(u(t))+ Vhor(.(,>)ver(u(t)) 

+ Vver(.(,)) hor(u(t))) = 0 

Taking v ( t )  = ~(ver(u(t))), one gets 

hor(Vhor(u(,)) hor(u(t))  + V~ ~(~(,)> hor(u(t)) + V~-,(~(,))~-l(v(t)) 

+ Vho...>)~-~(v(t))) = 0 
(5.3') 

ver(Vhor~, ( t ) )~- l (v( t ) )  + V,~-,(~(,>)~-l(v(t)) + Vhor(u( t ) )~- l (v( t ) )  

V~-'~(,)) hor(u(t))) = 0 

(5.3***) 
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Supposing 

dv 
d t  (t) = 0 and R*(g )~  = L * ( g ) ~  = 

A we get conditions imposed on the connection to B, (o3) (see Appendix A). 
Finally, we define normal  coordinates on P. Let exp : T(_P) --) P be the 

exponential  map on (P, y), such that e x p p : T a n p ( P ) - ) P  for each p ~ P, 
expp(V)=F~(1) ,  where F~(1) is an endpoint  of  a segment of  a geodesic 
through p whose tangent at p is V for an arc parameter  equal to 1. Choosing 
an or thonormal  basis (eA} for Tane(P) ,  we define a coordinate system in 
the neighborhood of P assigning to the point expp(~. A xAeA) the coordinates 
(x  ~, x 2 , . . . ,  x"+4). We call them normal coordinates. It is easy to see that 
the physical interpretation of  normal coordinates is the following. They are 
initial velocities and gauge-independent  charges of  test particles in such a 
way that 

x o 

2P 2 \ m o ]  and = u~ 

We can also define the function s, 

n+4 
,4-S 2 = ( x l )  2 -  ~,, ( x A )  2 

A=2 

and polar  coordinates s, 0~, 02, �9 �9  0,+3. In the case of  spacelike geodesics 
our interpretation breaks down (as trajectories of  ordinary test particles). 
They are in this case tachyons. Moreover,  supposing that Uo ~ is an initial 
velocity of  a tachyon, we can maintain our interpretation. 

6. G E O M E T R Y  ON T H E  M A N I F O L D  P 

Using (4.8) and (5.10), (5.11), and (5.12), one easily writes the connec- 
tion (DAB o n  _P: 

( ~*(~t~)--p2ldbgS'~Ldst30b Lat3vOV+(1/p)gtJ~g(~Z')P'vOa~ (6.1) 
toAB=~p21bdg~t3(2Hdv~-- Ld ~)oZ'--p~(~t3)p.~lbcO" (1/p)g~t~(~'Y)p,v~abO~ d-~b] 

where L~t~ -- - L ~  is a tensor of  Ad type on P such that 

ldcg~t3g W L dv~ d- ledg~g~V L dt~ v = 21cdg~g~Z'Hdt~ v (6.2) 

~"b = I'~b~O ~ is a connection on an internal space (typical fiber) compatible 
with the metric lab such that 

ldb['do~ + l~dI'd~b = --ldbCd~ (6.3) 

F~b~ = --I'a~b (6.4) 
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The connection o3% on the typical fiber is an analogue of the connection 
o3~ on space-time. Thus, we suppose for the sake of symmetry that 

Oobo ( I ' ) = 0  (6.5) 

This means that 

I'Ob. = 0  (6.6) 

~("~) is an inverse tensor for the symmetric part of the metric g(~r 

g(~)g(~)  = 6 ~  (6.7) 

Now we introduce the second connection 

4 
WAB = wAB - -  r (6.8) 

3 (n+2 )  

where 

i f =  ff~0 ~ = � 8 9  ff%~)0 ~ 

and n = dim G. It is easy to see that if" is a horizontal 1-form 

hor if" = if" (6.9) 

Horizontality is understood here in the sense of the connection ~o (connec- 
tion on the fiber bundle _P over E with the structural group G). The 
connection is right-invariant with respect to the right action of the group 
G on _P. 

Thus, we have now all (n+4)-dimensional  analogues from Moffat's 
theory of gravitation: two connections o J  A B and WAB and the nonsymmetric 
metric TAB. NOW let us turn to calculations of the torsion for ~0AB, 

O a ( [  ") = DO A (6.10) 

where D is the exterior covariant derivative with respect to the connection 
~0AB. One easily finds 

Q"~v(F) 
ot Q r~(F) 

Q~(F) 

Q"~b(F) 

Q~b~(F) 
Q%(F) 

= (~r  (6.11) 

= - 0 % , ( r )  

= 2p21bdg~Hd~,r + p2(Ibdg~r + ldbg ~ )Ld~,  (6.12) 

= 2(Ha.~ - La.~) = -2K~.~  (6.13) 

= _ Q ~ b ~ ( r ) = l ,  ,;(~r), ~ (6.14) 
p 

= 2pg(~)p,~l[b~] = 2txp~(~)p,~kb~ (6.15) 

= Q%~(F)  = --(C~b~ + 2F%~) (6.16) 
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where Q~t~(F) is the torsion of the connection aS~ and Q%c(I') is the 
torsion of the connection o5%. We will find later the physical interpretation 
of the tensor Kay; on P, which is of course of Ad type. Equation (6.15) 
gives us an independent interpretation of the tensor kab as a factor in a 
torsion tensor Q~ab. Let us turn to a calculation of the 2-form of curvature 
for the connection oaAB. We have 

~'~AB(F ) = d~A13 -'F o)Ac ^ o,)CB (6.17) 

One easily gets 

--labg ~'~Ldst3Hb~,]O ~ ^ 0" + [plbdg'~~162 p,e(2Hd.. ,  -- Ld..,) 

_~(p21dbg~,~Ldt3) -(,~,o) ~ ~ 0 b + pg p.o,l.bL t3~]O A 

+ ( p41d[bllelf]g&~g~'/Ld~,Le~t~ + P---21dpg &~Ld~cjC Pbf 

+ .(~,o~ . ;,(~e~ ~ "~ 0 b A r  g /'/,mS~6S ~',~:'[ bf ] ~ (6.18) 

12~b (F) = { V[. [p21bdg .t~ (2Hd ]~ _ Ld.]t3 )] 

2 
+P~_ L d ~,Sv rF,~ ~z(~t3)~ 1 H ~ 2 lbdg~3(2Ha~t3 -- ~t3]v ~ ' ,  , ' - - e s  t,,~3 bc ~. 

~ d d ~(By) } 0 ~ +plbdg (2H [~I~31-L [~lt31)gl~l~3g P,v ^ 0~ 

+ { r  (pff(~t~)p,~) Ib,~ + ~7. [p21bd (2H d _ L u  ) g ~  ] 

-p41,~,,bbyg~'gVt~Ld~v ( 2 H ~  - L f ~ )  

--~,r p.eg~.g,(~") p.flba}O a A O" 

-]- S Id,[3tbd *'~ ~ - - / ~  S ~',t~s "-" ~'d[~'lbl~]J (6.19) 

Ft~;3(F) = Vt~L it31~]+~ L t3rQ ~(F)+-g ;3~g  p,rrJ .~ 
P 

1 . x (~v)~  r a  ~ 0  ~ n 0  ~ 

+ [ CT . ( l g~36g,( ~" ) p. .  ) 8"~ - V ~La;3v - OZ l abg 6~ L'~.vL a6;3 
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1 .~(a~)~ ~ .~(~)~ ~a I 0 v 0 b 
+ 7  ~5a~t5 p.~/3v~ p,~u b_ A 

1 ~ )  ~ 1 ~ 
_ "( v ~ _ _ _  - ( v )  C 

- (~ )  a~ d a ) 0  b 0 ~ + p g ~ g  p,~,g L afld[b6 c] ^ (6.20) 
I 

+ ~ p  6abga~,(aV) P, ,O'~.~(p)  

+p21bagVOLdvE.(2Hd~]~ -- La~]0)] 0" ^ 0 ~ 

+[--p~(V~) p,flb~Lav. -- plbd~(O~) p ,~ (2Hd.o  -- Ld ~)~a ]O ~" ̂  0 c 

--gvag(aV) p, vlbtc~Od]O d A 0 c (6.21) 

where V.  means the covariant derivative with respect to the connection 
o3~. Here O"~(F) is the 2-form of curvature for the connection a3~0 on the 
space-time E and ~ b ( F )  is the 2-form of curvature for the connection o5% 
on the typical fiber; V means its covariant derivative. (~"0v(F) is the torsion 
of the connection o3~, on E. Using (6.18)-(6.21), one easily reads the tensor 
of curvature for the connection wAB, 

R ~ . ~ ( F )  = ~.~(~) 
2 . . . .  (2Hdw[~ a c 4- z p  [ lcdg -- L ,oE.)L ~]~ + ldbg&~LdaoHb.~,] (6.22a) 

I-" bd~ 8/3a~ I~,,~, ~-~ ~o, L d ~ )  

_ ~ .  (pZldbg~Lda, )  _ pg(,~,O)p,o,l~dL~ (6.22b) 

R'~Obf( F) = 2p 4 ld[ill e[f]g ~ag e~ L da~Le 
2 

.;(~"~ "(~r t 2 (6.22c) + ~; P,,og#6g i~,et[bf] -t'- IdpgaaLaa~c Pbf 

R ~b.~(F) = 2VE. [p21bdg '~ (2nd~]r -- Ld.]r 

+ p21bdg.[~ (2Hdv~ _ LavE) O y  (~,) _ p~(~,~)p, f lbcHCv 

~d x ~ -~a~) ~ (6.22d) + 2plbdg '~(2Hd[. l l~ l -  ~ [.I,al~,~l~l~']g t'.V 

R'%,~ ( r )  = - R %,~o ( r )  

= ~7,~(p~('~a)p.~)lba + fTa[p21bd(2Hd,~ -- L d ~ ) ]  

- p'*la,~Ibfga'~g'~Ldav(2Hf~ -- L f ~  ) - ~('~e)p.r a 

(6.22e) 
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R'~bac(F) = p~,(~t3)p,t31bkckac 

+ 2p3g(~'t3)P,t~gS~Las~,IdE,,lrblcl (6.220 

2p lbdg ( 2 H  [~I~.I-L [.l~.l)L Ivl.] 

q---t~ bg6aff t Wp,vQ . , , ( F ) -  ,~ - _ - (v )  23 bVE~ (6.22g) p p gl~l~*]g P,z, 

R ab~c(r ) = --Rabc. ( r )  = --pff(z43)p,JbcLavr 

-- plbdg (~) p. ~ ( 2 Hd~/j -- L d.r ) ~ ac (6.22h) 

g ~bdc (F) = .~ ~bd~ (F) - 2gv~g,~)P,~g~V~P.vIb[~6 ~d] (6.22i) 

R a ~ ( F )  = 2V~L~I~I~] + L ~ r t ~ r . ~ ( F )  

2 0  g(av), u~  + 2 0  -(at)^ r a  
+ -  ~ a ~  t-,~-- ~,~ P sa t , g  t',v "~ It~l~ (6.22j) 

P 

R~t~bv(F) = -R~ t~b (F )  

1 ,r,(~)~ . .r,(,'-~. ~,, (6.22k) - - - -~  ~58~,~ /.-',/3~r / . ' ,~ '  b 
P 

+ 2pg~,g("t~)p,,g~VLd~r162 (6.221) 

/~r  is the tensor  o f  curvature  for  the connec t ion  o3~t~, and  / ~ a ( P )  
is the t ensor  o f  curvature  for  the connec t ion  a3"b. Using (6.7), one easily 
gets the 2- form o f  curvature  for  warn  

4 
~'~AB( W) = ~'~AB(F ) - -  ga B dff" 

3 ( n + 2 )  

4 
= ~ ' ) A B ( F )  3 ( n + 2 )  ~AB~r[tx'~']OtX A 0 v (6.23) 

and  the tensor  of  curvature  for  WAB, 

R"r = R~r 

R%.~(W) = R%,,~(F) 

R"~a (W) = R ~,~d (r) 

R~bca( W) = Rab~d(F) 

8 
3(n + 2 )  8 r Wt"'~l 

8 a - -  

3 ( n + 2 )  6 bWt,,,,, 1 (6.24) 

R " ~ . b ( W ) = . R ~ . b ( F )  
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where RABcD(W) is the tensor of curvature for the connection WAB, and 
R A B c D ( F )  is the tensor of curvature for the connection wAB. 

NOW we pass to the calculations of the Moffat-Ricci curvature scalar 
for the connection w A ~  on the manifold P. We have 

1 R( W)= "yBC [RABcA( W)-b~ RAABc( W)] 

+-~ U%o(W)+U%~o(W)+ R%~(W)+IRL~c(W) (6.25) 
p 2 

Using (6.25) and (6.24a)-(6.241), after some calculations, one gets 

. R(F) -2121 . H C H  d _ 1 o~,oM3~r ~ rsd 
R ( W )  = R ( W )  + - - - - - 2 - -  p t c.  ,~dS ~ 1-" ~ , ,  ,o. J 

P 

P-~ g.(a~')~ ~.(v~)~ a- 
2 s , ~ s  v,~s v , ,  - Q ( p )  (6.26) 

p 

where 

Q ( p ) = ~ p g ~ t 3 ~ ( ~ V ) p . v g ~ O ~ ( ~  ) + ~5 v~ (pg ~ n -  ..~)~ p,~) 

n ~ [ ~ ( l g ~ v ~ , ( ~ V ) p , ~ , ) _ C T , , ( l g ~ ( ~ V ) p , v ) ]  (6.27) + -  g~ 
,2 

P = l~dc31[dc3 -- n ( n  -- 1) (6.28) 

H c = g~'~lHC~,~ (6.29) 

R (W )  is the Moffat-Ricci scalar of curvature for the connection f f ' ~  on 
E and/~(I ' )  is the Mottat-Ricci scalar of curvature for the connection o3~b 
on a typical fiber. Now let us pass to the calculation of a density for the 
Motfat-Ricci scalar of curvature 

y ' / Z R (  W )  = ( - g ) ' / z l t j ' / 2 p " R  ( W )  

= (-gl ll ) '/: [ p"~ ( w) + ~ + 8"lrlgn+ 2 ~yM 

/,/2 [~v] ~(a~/) _ ~]  + P" 2,tmg~(VU)p,vp,u ~-- g g~,g  p,~p,.y)] + O ~ K  ~ (6.30) 
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where 

and 

l = det(/~b) and 

~YM - 1  (21cdHCH d _ l .'~~ t d 
8r 

(6.31) 

m = (l[dcllfd~1--3n(n -- 1)] (6.32) 

n 
K "  = - p"-~(5~ ('~) - g,..g~.~(eV))p,~, 

2 

From the variational principle point of  view, for the density y~/2R(W),  the 
four-divergence O.K ~ does not play any role. It could play a certain role 
for some topological problems. Thus, we really only have to deal with B( W); 

[ " 

B ( W )  = ( -g i l l )  '/2 p"R( i f ' )  + ~ +  8~p'+zZgVM 
P 

"b p n -2 (mf i , ( vv ) -Jr  nZ g[~"3g~.~,(~V))p,~,p,~ ] (6.33) 

a 
Finally, we write down some identities concerning H . .  and L~.~ 

coming from equation (6.2), 

gEu~"~L'~,,, -= h aClcpH p ,g[.,.] (6.34) 

_ ~ ,  ~ ~ . . . . .  d (6.35) 'd~;1 . ~ . ~ - r  d ~  ~ ~''t-tc.~ +l~ag~,~g~Lat~,~HC_Ztedg g r l . ~ r l ~  

ldcg~ L do43L~,, = lcdg~ L Co43L d,ot~ (6.36) 

Note that all the formulas presented in this section are valid for an arbitrary 
right-invariant l~b, i.e., such that its symmetric part is not proportional to 
the Killing-Cartan tensor on G. 

7. CONNECTION oS"b. C O S M O L O G I C A L  CONSTANT 

In R ( W )  and B(W), ~ ( ~ ) / p 2 - n  plays the role of a cosmological term. 
Let us turn to the calculation of  the Moffat-Ricci curvature scalar for the 
connection O~ab, i.e.,/~(F). One can find, using (6.3), (6.4), (4.13), and (6.6), 

~ (r') = 21bkcek, f"*eb + lbkCb,,I'aek + lbkf'~yk ['Yb,~ (7.1) 

One finally gets 

31be~-~ p i.~k R([')  = 2l(ae)h,~e+~, i ket.. pb (7.2) 
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~ a  
where  F bc satisfies compat ib i l i ty  condi t ions  

IdbFdac(t  z )  d- ladFdcb(t~ ) = --IdbCdbc (7.3) 

and 

Fbac(~s = --['bca([~), Fbab(],s ) = 0 (7.4) 

It  is easy to see that  R(F)  is a rat ional  funct ion of/x.  However ,  it is a very 
hard  task to find the exact  dependence  on tx. Therefore ,  we do not  have an 
exact  solut ion of  (7.3) and  (7.4). Moreover ,  we can find an asympto t i c  
dependence  for  a very large/x .  I f / x  ~ oc, equat ion  (7.3) turns into 

kdbFdac + k~dpd~b = --kdbCdb~ (7.5) 
~a 

Thus,  in the limit of  a very la rge /z ,  F%r goes to the constant  F b~ with 
respect  to /z. On the other  hand,  we have 

l ab = Aab 
A (7.6) 

where  A = det(/~b) and A ~ is a cofactor  matr ix  fo rmed  f rom lob. It  is easy 
to see that  A is a po lynomia l  of  nth order  with respect  to /z and A ~ a 
po lynomia l  o f  ( n -  1)th order  with respect  to lz. Thus,  we finally get for  a 
very l a rge / z  

~ ~ Abe const 

or  

/~ (1~) -~ const for  large ~ (7.7) 

It may  be possible  to find an exact solut ion of  (7.3) and (7.4). In this way 
we get 

/~ (]~) Pm (/z) or Pm (/~) (7.8) 
Qm+,(#)  Qm(/z) 

where  Pro, Qm, and Qm+~ are some po lynomia l s  with respect  t o / z  of  order  
rn and m + 1. The P,, and  Q,,+, (Qm) do not  have c o m m o n  divisors. I f  the 
po lynomia l  Pm(/z) has a real root /~o,  we have 

~(~) = 0 f o r  ~ --  ~ o  

I f  we suppose  that  FJcb has a potent ial  ~ such that  

I ' I =  �89 ^ v b = d Z  I =  d ( Z f  v d) (7.9) 

We can find for  [ ' f  

Fdab = - -2~a[a ,b  ] -- "~dcCCab (7.10) 
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where ,b means an action of the left-invariant fields on the group G. For 
Fdab a right-invariant quantity we suppose the same for 7~de : 

or  

~da ,  b "~- Ceab. '~d  e --  C d e b  ~'~e a = 0 (7.11) 

where 

~'~be -~" hf'o ~ '~ f  (7.15) 

Let us consider the cosmological term for p = 1, i.e., 

/~(p) = qb(~) (7.16) 

In general, qb(/~) has the following form: 

Pm (/z) Pm (/z) 
~(/~) - - -  or (7.17) 

Qm+,(/z) Qm (/~) 

Thus, we can make the cosmological term to vanish if we choose ~ = it0 a 
real root of  Pro- In this way we get the physical interpretation of the 
dimensionless constant ~ connecting it to the cosmological constant. I f  we 
come back to the ordinary system of units, the cosmological term will be 
very big numerically because of the numerical constants in front of  it. Thus, 
i f /~(I ' )  is of  the order of  one, the cosmological constant is 10127 times bigger 
than the upper  limit f rom observational data. The only mechanism to avoid 

V b'~da "-~ 0 (7.11a) 

Using (7.11), one easily gets 

Indab = C e a b  ~,d  e --  C d e b  ~,e a "Jc C d e a E e  b (7.12) 

Equation (7.12) defines ~'dab which satisfies conditions (7.4) identically. 
However,  Ede should be a solution of  equation (7.3) if we substitute 
equation (7.12). 

F bc has at least g ( n ) =  n [ n ~ / 2 - a n - 1 )  indepen- Note the following. -a  
dent coordinates. From equation (7.12) one easily gets that it possesses 
f (n )  = n 2 independent  coordinates. Thus, we should have g(n)>-f(n).  This 
is possible only if n > �89 + x/J7), where n = dim G. Thus, we get dim G > 4. 

Thus, for G = SO(3) we cannot use the formula (7.12). 
In the case of  a symmetric lab = hab one easily finds 

~,a b = 1 6 a  b (7.13) 

One can express R(I ' )  in terms of Eab and gets 

3 ( 2 - n )  3 
=21(ae)hae-~ 2(n - 1) Ibe'~be- 2(n - 1~ IbeEeb (7.14) 
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this unwanted fact is to make it vanish by choosing an appropriate /z. 
Sometimes we can also make the cosmological constant as small as we want 
if we choose/z sufficiently big, i.e., l /z[-  101:7. 

Let us consider the connection I'~b~(g) on G, g ~ G. Moreover, one has 

I"~b~( g ) = I'~: ~,( e ) U~,( g -~) U~' ( g ) U~'(g ) (7.18) 

where U is an adjoint representation of G (see Appendix A). Thus, in order 
" a  

to find F b~(g), it is enough to find I'~b~(e) for l~b(e), i.e., to solve the 
equation (7.3) for g = e c G. 

It is also easy to see that 

R(F)(g)) = R(F(e)) (7.19) 

Let us consider equation (7.3) for G =  SO(3) as unit element of SO(3). 
Using (2.24), one gets 

f'333(~) = f '~:(~) = r~:3(~) = r ~ ( ~ )  = f'~::(~) = I'~,3(~) 
=~-  (~ )=  f.3 (~ )=  ~.: (~ )=  ~: (~ )=  ~: (~ )=  f.: (~) 

= F2u(e)= ]~a:z(e)= Fa:a(e)= Iq33(e)= Iq~:(e)=0 (7.20a) 

2 

~3 ( ~ ) = _ f - : 3 ( ~ ) _  /z /Z2+4 

/Z2+4 

2 
r '~:(~) =- r~ :3(~)  = / z :+4  

(7.20b) 

//,2-1- 4 

Using equations (7.1) and (2.26)-(2.27), one easily gets 

~'(/z)l~ =so~3~ = k(~(/z))]~=so~3~ - 2(2/z3 + y/z:+ 25/z +20) 
(/z2+4)2 (7.21) 

For large/z we obtain 

~b(/z) It=so(3)=/~(I'(/z)) 1 o = s o ( 3 ) 4  (7.22) 
/Z 

Let us consider the cubic equation 

2/Z 3 + 7/3,: + 5/z q- 20 = 0 (7.23) 
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and let us find its roots using the Cardano method. Equation (7.23) can be 
reduced to the standard form 

3 19 620 
Y - 1-2 Y + 27 = 0 (7.24a) 

using the substitution 

/z = y - 7 / 8  

The resolvent equation for (7.23) looks like 

620 193 
z2+ z - 0 

27 27. 123 

The discriminant of  (7.25) is 

D = q2 _+_ 24P 3 
27 2 7 3  �9 42 24 �9 3 9  

Thus, the equation possesses only one real root, 

y :  1 

(7.24b) 

(7.25) 

3583541 1 2 . 1 7 " 6 7 " 1 6 3 > 0  (7.26) 

- 3 1 0 J  +F  1 [3583541\  '/2] l/~ ] 

(7.27) 

For this 

(7.28) 

is the only real root of  equation (7.23). 
Thus, one gets 

/~ (I'(/Zo))1~:so~3) = 0 (7.29) 

and the cosmological constant vanishes. One calculates /~o and gets 

/.to = -5.557669363 �9 �9 �9 (7.30) 

Moreover, note that the connection (7.20a)-(7.20b) does not satisfy 
(7.4). Thus, it should be rejected as unphysical, and because of this the 
SO(3) group is not unphysical. 

Let us consider (7.3) for dim G > 4 and rewrite it for indices abc, cab, 
bca. One gets 

ldj'aac + l,~d~'acb = --lbdC't,,c 

ldaFdac +lcd rdba = --ladCdcb (7.31) 

l,,c f"~bo + lbd ~,.~ = - l~,,C % 
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Adding these equations, one gets 

F bac q- F acb q-Fcba = -- l ( lbdC dac -b ladC dcb q- IcdC dba ) (7.32) 

where Fb~ = hdbFda~. Substituting (7.12) into (7.32), one gets 

C Pac(Ebp -- 2Epb ) q- C Pcb(Eap - 2 Z p . )  + C Pba(~-,cp -- 2Epc)  
--  l d - -5( lbaC ~c + l~dCd~b + l~dCdb~) (7.33) 

Equation (7.33) is identically satisfied if 

"~b -- 2"~ ba = -- l  lab (7.34) 

Thus, we get 

o r  

1 1 /x 
Z~b = g (2l.b + lb~) = ~ hab -- -~ k.b (7.35) 

1 tz k d (7.35a) 

where kdp .= hdekep. Substituting (7.35a) into (7.12), one gets 

~d _1 + ~ _ ( C P e k ~ _ C d r k p  + C d  k ~ ) ]  (7.36) 

Substituting the last equation into (7.2), one finds 

/~(~) = (4n+lbalab) (7.37) 
4 ( ,  - 1 )  

for n > 4. For l~b a right-invariant quantity, we get 

/~(I'(g)) = R ( F ( e ) ) -  (4n+ l'b~(e)~b(e)) (7.38) 
4 (n - - l )  

where e �9 G and it is a unit element of G. 
Thus, we get, using (2.39)-(2.39a), 

~[n/2] 
- -  / , j =  1 /~(~,) = (5nA+2 ~'J (A2j,2;_, - A2;_,,~;)) (7.39) 

4A(n--1) 

where A = det([ob(e)) and A2j.=j-~, Azj ,,=j are minors of Tob(e). Thus,/~(f ')  
is a rational function of ~ , j  = 1, 2 , . . . ,  In/2],  and it is zero if the polynomial 
of ~'J is 

In/2] 
5nA+2  ~ ~'{(A2j.2j_~-Azj_I,2j)=0 (7.40) 

j --1 

for some set of ~ { , j =  1, 2 , . . . , [ n / 2 ] .  
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Moreover, we can rewrite (7.39) in the more convenient form 

. . ( E./21 ( _ ( ~ J ) 2 +  ~J;t2j_,) \ 
R(F) = -  \ 5 n - 2  j=IE ((~j)2+A2jA2j_I)I[4(n-1)]-I/ (7.41) 

In the case of  Ai = A the formula (7.41) is simplified and if simultaneously 
we put s ej =/z, then we get 

/~(F) = [l '*2(5n-2[n/2])-2tzA[n/2]+5nA2]=c~(lz) (7.42) 
( / ,2+a2)  

Let us consider the quadratic equation 

The discriminant of  (7.43) is 

2 n 2 

and 

Thus, we do not have real roots. 
For large /z we get 

(7.45) 

Thus, 

In this way one gets 

where 

4 ( n - l )  

Let us consider the general case for R(F),  i.e., we do not suppose equations 
(2.39)-(2.39a). Thus, in this case hab and kab do not commute. In order to 
do this, let us consider the matrix 

Lb" = l""(e )lba( e ) (7.47) 

lab(e)Iba(e) = Tr(Lb') 

Tr(Lb') = ~ Pi (7.49) 
i = 1  

Lb'eh( i) = p,e"( i) (7.50) 

(7.48) 

~(~,)~ (5n-2[n/2])  (7.46) 
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In  equa t ion  (7.49) we sum over  all e igenvalues with their  multiplicities.  
They  can be complex.  Moreover ,  the sum is real. Equa t ion  (7.50) can be 
t r ans fo rmed  into 

where  

o r  

In  this way we get 

where  we have 

(hih,~b + I~k~b(e)) eb(i) = 0 (7.51) 

Pi -- 1 
hi - Pi + 1 r 0 (7.52) 

p i + l '  

l + h i  
hi ~ 1 (7.53) 

P i -  1 - h i '  

lab(e) lba(6)  = ~ l + h i  

i=1 1 - h i  
(7.54) 

l (h)  = det(hhab + IXkab(e)) = 0 (7.55) 

In equa t ion  (7.54) we sum over  all roots o f  (7.55) with their  multiplicities.  
Thus,  we have  

" 1 +h i~  [ 4 ( n -  1)]-1 (7.56) /~([') = -  4n+ i~ ,  1 - h J  

We can rewrite (7.56) in the fo rm 

/~(F) = - 4n + [4(n - 1)] -1 (7.57) 
.= 

where we have 

det(~hab + k~b) = 0 (7.58) 

and  /x is such that  1 - /x~i  ~ 0 for  any ~i satisfying equat ion  (7.58). Thus,  
we have for  the cosmologica l  constant  

i=1 i=1 j~:i 
j = l  
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It is easy to see that ~ ( ~ ) =  0 if 

4n ~ (1--/Z~'i)-F ~ (1"-b12,s fi ( 1 - ~ ) = 0  (7.60) 
i=1  i=l  j ~ i  

j = l  

which is an algebraic equation of nth order. 
Let us suppose that (~ = ~" for i = 1, 2 , . . . ,  n. In this case one easily gets 

5 
P-o - (7.61) 

3r 

and ~(/Zo) = O. 

8. C O N F O R M A L  T R A N S F O R M A T I O N  OF g ~ .  
T R A N S F O R M A T I O N  OF THE SCALAR FIELD p 

In Section 6 we obtained the Lagrangian density B(W),  

1 iZl,/2 B(W) = (_g) l /2pn~(W)  + n-2 n + 2  p L~oaj(p) + 8rrp LyM 

+ ( _ g ) , / 2 ~ ( ~ ) p , , - 2  

where 

(8.1) 

(__g)1/2 
LyM -- 8r (21~d H c H a  -- "cd~t ,~rc~ ~ ~,~**ud~J~ (8.2) 

Lscal = (--g ) a/2( m g ( ~ )  + n2 gE'~lga,g(~r))P,~P,v (8.3) 

LVM is the Lagrangian density for the Yang-Mills field and Lsca~(p) is the 
Lagrangian density for the scalar field p. This Lagrangian [B(W)]  is in 
the same form as in Bergmann's paper (see ref. 50). Bergmann considers 
the general Lagrangian for the tensor-scalar theory of gravitation, including 
Jordan-Thiry  theory and Brans-Dicke theory (refs. 93 and 94). In his 
Lagrangian there are four arbitrary functions of the scalar field, f~, f2, 
f3, f4. In our case we have 

f , ( p ) = p n  

f2(p ) = 8,n-p n+ 2 
.+2 (8.4) 

f3(P) =P 
n--2 

f4(P) = P 

There are of  course some differences, since our theory is nonsymmetric. 
There exists a skew-symmetric part of  &,~, and because of  this, we 

have a different Lagrangian for the scalar field p. Simultaneously, in the 
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place of the ordinary Ricci scalar of curvature we have the Moffat-Ricci 
scalar of  curvature. In the place of  the Lagrangian for the Maxwell field 
we have a Lagrangian for the Yang-Mills field in the nonsymmetric  version. 
Moreover,  the general features are the same. We really get a scalar-tensor 
(nonsymmetric) theory. Now we proceed with the conformal transformation 
for the metric g ~  and the transformation of the scalar field p. This is only 
the redefinition of g ~  and p, 

p = e -'v (8.5) 

1 
g~,~ -+ e " V g ~  = ~ g ~  (8.6) 

This procedure is of  course from ref. 50. The only difference is that &,. is 
now nonsymmetric.  After the transformations (8.5) and (8,6) we get 

1 B ( W )  --- (_g)1/2{~(W) 4- e(2+')*.R(I ") + 8~r e-( '+2) '~VM + ~fsr 
Ill'/~ 

(8.7) 

where 

~scal( T ) = (rag (~)  + n2gE~Vlga~g(~V))~ ~T ~ 
(8.8) 

m = l~C]lEd~]-3n(n - 1) 

It is easy to see that the scalar field �9 is chargeless (it has no color changes). 
Howevcr,  it couples to the gauge (Yang-Mills) field due to the term 

837" e (n+2)xP'~yM (8.9) 

It couples also to the cosmological constant 

e('+2)'~/~(F) (8.10) 

These two terms, (8.9) and (8.10), suggest that the scalar field is massive. 
This is different than in Brans-Dicke theory, where the scalar field couples 
to the trace of  the energy-momentum tensor for matter (refs. 93 and 94). 

We can consider a more general expression, i.e., [ R ( W )  + flJx/y, where 
fi is a constant. In this case we get one more term in the expression (8.1), 
i.e., ([ l[ l /2f l (-g)~/2)p" or ( [ l l l /2 f l ( -g)  1/2) e "q'. This term plays the role of 
an additional cosmological term and can be added to the term qb, leading to 

(~')eff = e n't* ( /3 4- e2"t'/~(F) 

For p = 1 (xI t = 0) this leads to the effective cosmological constant fl +/~(F).  
Taking /3 = - / ~ ( F ) ,  we can make it Vanish. However,  for p (or ~ )  non- 
constant, this does not work. Fortunately we have a completely different 
mechanism of vanishing of the cosmological term and we do not need such 
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manipulations. Moreover, some authors use this additional term in the 
classical non-Abelian Kaluza-Klein theory in order to solve the problem 
of  the cosmological constant. We do not consider this to be in the spirit of  
the original Kaluza-Klein theory and no longer consider this additional 
term. 

9. GAUGE INVARIANCE OF THE LAGRANGIAN 

Let us consider the problem of gauge invariance of the Lagrangian in 
our theory. In geometrical language this means that 

~ ' (g)Sf  = ~ or X a ~  = 0 (9.1) 

where Xa means the infinitesimal right-action of the group G on P in the 
direction a. Equation (9.1) is satisfied, because of the right-invariance of 
the connection WAB. Moreover, we will check it here independently, starting 
from equation (6.33), which defines the Lagrangian 5r Equation (9.1) is 
equivalent to 

V~JE = 0 (9.2) 

[see (3.27) for the definition of  V~]. One easily checks that 

VIle(F) = 0 = V ~ m  (9.3) 

In the same way we can check that 

a~YM = 0 (9.4) 

supposing that La , ,  is an Ad quantity (Ad type). Moreover, we are supposed 
to check the invariance of  the formula (4.10) which defines La,~. 

Let us rewrite (4.10) in the following form: 

o e  cr6--d 3cr e ~ cS . . . .  (9.5) dge,og L ,~, + g ~ g  L ~o.= Z g~,sg r t  ~,, 

where 

Qe a = ICeldc (9.6) 

Let us act on both sides of  (9.5) by Xy.  We get 

xfQed ( g~og'~  L ao.~ ) + Q edDdqf  ( g~,~g~ L qo_o, ) 

+ g,~g~'~D~afLa~o. = 2g,~sg~'~CeafHa~,,  (9.7) 

where we put 

XfLdo.a = DdqfLqo.a 

XfHdo.e~ ~- CdqfHqo.a  
(9.8) 
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The last condition means that Hqo-c, is an Ad quantity. Ddqf defines a 
transformation property of L~,~. 

Using equation (9.5), one easily gets 
e p 6 t~  d e g~g~ ( X f Q e d  .-t- Q e q D q d f  --  C p f Q  a ) q- going L r df  --  C edf ) -~ 0 

(9.9) 

Equation (9.9) must be identically satisfied for every Ld,~, and g~r Thus, 
we get 

Deaf -~-  C 3 d f  (9.10) 
e q e p XfQee + Q qD af-- =0 C pfO d (9.11) 

Equation (9.10) means that Ld,~ is an Ad quantity and equation (9.11) is 
equivalent to 

^ e VfQ d = 0 (9.12) 

This is equivalent to 

~ f l a b  = 0 (9.12a) 

which is the condition for lab known from Section 2. 
Now the gauge invariance of 5fyM is easily satisfied. 
Let us prove the gauge invariance of the Yang-Mills Lagrangian 5fvg 

in a different way, supposing that led is right-invariant and L e"~ is of Ad 
type. One has 

5~ - l -~Icd(H~He- ls~ 'Ha ~ (9.13) 
Y M  - -  8 7 T  - -  - -  p ~ v J  

different gauges (two local sections e and f of the Let us take two 
bundle P) and 

e * U " ' ( e ( x ) )  = B ~ " ( x )  

e*Hd ,.(e(x)) = F a ~ ( x )  

f*LCZ"( f (x))  = Bez~(x ) 

f ' H a ( f  (x)) =- Fd.,,(x) 

e*lcd(e(x)) = mca(X) 

f*led ( f ( x ) )  = mcd (X) 

mab(X) = h,,b + I~n~b(x), One writes 
matrix U = ( u d . ) =  Adg-'~x~ be a gauge-changing matrix. One gets 

Fdtx  ~ ~ U d a F a x  u 

~dl~v = Udanatx~,  

ffl c d -~ ~J k c [ f  ld m k l 

(9.14) 

(9.15) 

(9.16) 

where nab(x)=e*kab(e(x)) .  Let the 

(9.17) 
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i.e., (Okd)= 0 = Adg(~), where 

~fkcUC d = t~kd 

One easily gets 

~?yM(e(x)) = ~ v M ( f ( x ) )  (9.18) 

which proves the gauge invariance of the Lagrangian. 
This result can be obtained directly using a technique of a vertical 

projection of  any curve t ~ p (t) ~ P. In this way we prove that the ~vM(P( t ) )  
does not depend on a gauge on any curve in P. Let us consider a gauge 
e~  r(e) and define a gauge-dependent  vertical projection t~  g(t)~ G of 
the curve t~p( t )  using the formula 

p( t) = r(e( t) )g( t) (9.19) 

We get 

Ha~(p(t))  = U%,(g(t)-l)Fa'~(e(t)) (9.20) 

La,,(p(t)) = uda,(g(t)-l)Ba'r (9.21) 

l~a(p(t))= U~'~(g(t))Ud'a(g(t))m,,d,(e(t)) (9.22) 

Thus, for any gauge e and for any curve t~p(t ) ,  one gets 

lad(p(t))Ha~(p(t))Ld"~(p(t)) = m,a(e(t))F~(e(t))Bd"~(e(t)) (9.23) 

i.e., 

~vM(p( t ) )  = 5r (9.24) 

We can also work in a different way using properties of  H~,~, L~,~, and 
l~d with respect to the right action of the group G on P. We get 

qb'(g)~yM = c~'(g)( l~aHC ~,L ar 

= (c~'(g)l~d)(~o'(g)Hr d~) 

= le,d,Ue:c(g) U d ' d ( g ) U C a ( g - 1 ) H a . ~ . U d b ( g - 1 ) L b ~ z ~ '  

= I~'a'H~,~ La'"~ = ~YM (9.25) 

It is worth noticing that in general vTg~g~l -~ vg~g~ - ,  ,~b ~-0; means a gauge 
derivative with respect to the connection to. 

10. VARIATIONAL PRINCIPLE. EQUATIONS OF FIELDS. 
INTERPRETATION AND CONCLUSIONS 

Let us consider the Palatini variational principle for R(W), 

8 [ yl/2R(W) d("+4)x= 0 
d V 

V c P ,  v = U x G ,  U c E  (10.1) 
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d("+4)x = d4xdt~a(g) ,  where d l ~ ( g )  is a bi-invariant measure on a group 
G (identified with a typical fiber via r : G--> F~ -~ G, x e U). It is easy to 
see that (10.1) is equivalent to [see (6.33)] 

i f  'l"/~a] I B ( W ) ( - g ) ' / 2  d 4 x = O '  U ~  E (10.2) 
u 

Using the gauge invariance of the scalar curvature, we integrate over a 
group (7. 

We redefine g~. and p as in Section 8. Thus, we have the following 
independent  quantities: g~., ~z~ , ~ ,  and w. We vary with respect to the 
independent  quantities. After some calculations we get 

gauge seal 
(10.3) 

(10.4) 

(10.5) 

g[~]  ~ = 0  

g~.,,~ - gc.F ~,~ - g~cF ~. = 0 
gauge gauge 
V ~  (lab L ac~)  =2g ['~] V~ ( h a b g [ ~ " ] H a ~ v )  

- - (n+  2)Or ~ - 2gEr (10.6) 

02~ 1 
[(n2 + 2m)g, ( ~ ) -  n 2g"~g, ("'~)] Ox ~ Ox ~ ~ - ~  O~ 

x{(--g) ' /2[n2g(u'~)--  n2 
J J a x  ~ 

-- 8 (n  + 2 ) ~  e-(n+2)'t*(~u -- 2(I )) ---- 0 (10.7) 

where 

gauge 
T ~ -  tab f ~ ~ r ~  e y l a  l b  

_ 14 g'~e [L~Hb~" - 2(g~'"3H'~'")(gtV'~]Hbv'~)] ] (lo.8) 

is the energy-momentum tensor for the gauge (Yang-Mills~ field, and 

seal e(n+2)~ { 

X k,5 ,Sv~ v }  ,,~ , , 

_g~t3(m~(~-)~_.,2.[u-]. ,z(vg)~a,t ' , ,Tr t -- ~ ,5 ,58;zl5 l ' r , v ' r  y J 
(10.9) 



336 Kalinowski 

is the energy-momentum tensor for the scalar field ~ .  We have 

K = e - ( n + 2 ) x I  t (10.10) 

It plays the role of a gravitational "constant"  

dp = e 2('+2)*/~(F) (10.11) 
167r 

qb plays the role of a cosmological "constant"  (cosmological term) 

m = (ttdclltdcJ--3n(n - 1)) (10.12) 

L'~ ,~ = (-g)l/2gO.gV'~L'~v 
(10.13) 

g[~]  __ (_g) l /2g[~]  

~Tgauge means gauge derivative and 

ldcg~g V~Law + lcdg~g~VLd~v = 2 lcag~g~VH dt~ v (10.14) 

Equation (10.14) can be rewritten in a matrix notation 

g ( g - 1 ) r ( l * L ) + g r g - l ( I T * L r ) = 2 g T g  l ( l r  * H r )  (10.14a) 

where T means matrix transposition and "*"  means the action of an (n • n) 
matrix on an n-dimensional vector. 

The left-hand side of  equation (10.6) can be rewritten as (_g)1/2 
~ gauger" / f a a ~ ' ~  ~gauge ~'ab~ j, where _ ,  means the covariant derivative with respect to 
the connection o3~ on E and "gauge" at once. 

Equations (10.3) and (10.4) are equations from N G T with Yang-Mills 
and scalar sources with a cosmological constant. Both constants, gravita- 
tional and cosmological, depend here on the scalar field ~ ,  which propagates 
according to (10.7). Equation (10.5) is the compatibility condition for the 
connection - ~ - "  co ~(F ~ ) .  Equation (10.6) is the second Yang-Mills equation 
with sources for L ~"". The first Yang-Mills equation is of course the Bianchi 
identity for the connection oJ [see equation (1.8)]. It is easy to see that 

gauge 
g~t~ T~  = 0 (10.15) 

scal 
g~t~T~(~)  ~ 0 (10.16) 

Now we are able to interpret all quantities in our theory. First of  all, 
it is easy to see that L~t3 plays the role of the second tensor of  the Yang-Mills 
field (gauge) (i.e., an induction tensor) strength and equation (10.11) 
expresses the relationship between both tensors Ha~p and L ~ .  
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In the electromagnetic case [G = U(1)], we have to deal with tensors 
F ~  and H ~  (see refs. 18 and 19), which are the first and second tensors 
of the electromagnetic strength (an ordinary and an induction one). In the 
classical electrodynamics of continuous media (ref. 68) or in nonlinear 
electrodynamics (ref. 69), it is necessary to define both of these tensors. 
The first tensor F,~ is built from (E, B) and the second from (D, H). Here 
we build H~,~ from (E a, B ~ and L~r from (D ~, Ha). For example, in 
quantum chromodynamics we have to deal with D ~ (see ref. 95). The vacuum 
behaves as a dielectric for the gluon field. 

If  the metrics g~r and lob are symmetric, H~,r -- La~r Thus, the skew- 
symmetric part of the metric YA~ induces Yang-Mills polarization of the 
vacuum (see refs. 23 and 24). 

In the electromagnetic case (see refs. 18, 19, and 25) [G = U(1)], we 
define the electromagnetic polarization tensor of the vacuum M~r induced 
by the skew-symmetric part of the metric such that 

g ~  = F~e - 47rM,~ (10.17) 

(L~t3 is analogous to H~r and Ha,e to F~r 
In the classical electrodynamics of continuous media (see ref. 68) or 

in nonlinear electrodynamics (see ref. 69) this tensor is usually defined. 
Here we can define the tensor M a ~  such that 

La,~9 = H~,t~ - 4 " n ' M a , ~  (10.18) 

M ~ ,  is the Yang-Mills field analogue of the electromagnetic polarization 
tensor M~,. It is easy to see that 

47rMa~ = = -K~ (10.19) 

[see equation (6.13)]. Thus, we get a geometrical interpretation of M ~ ,  

Qa,~ (F) = 87rM",~ (10.20) 

(M%~ is of course the Ad-type tensor defined on _P). Thus, the Yang-Mills 
field polarization induced by the skew-symmetric part of the metric YAS is 
the torsion in the additional dimensions. This is in very good agreement 
with the results from ref. 15. The only difference is that in ref. 16 the 
Yang-Mills field polarization has its origin from external sources and (10.20) 
plays the role of the Cartan equation in Kaluza-Klein theory with torsion. 
The skew-symmetric part of the metric YAB also changes the Yang-Mills 
field Lagrangian, 

~VM lab - 87r[2(g["r176 ] (10.21) 

For (10.21) we have a new term 
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which is an interaction between the skewon field and the Yang-Mills  field. 
This term vanishes if the metric of  space-time is symmetric and is always 
nonnegative if the group G is compact.  The second term in (10.21) is also 
different than in the classical Yang-Mills  field Lagrangian. In place of  the 
symmetric tensor hab w e  have now a nonsymmetric  tensor 

lab = hab + [Zkab 

The skew-symmetric part  of  the metric induces also a source for the Yang-  
Mills field. In (10.6) we get a current 

1 gauge 
J'~a = ~--~ g['~/3] V ( h a b g [ ~ ' ] H b )  

n + 2 0 ~ t [ l a b L b l ~  ~ _ 2g[~ l (h~bg[~]Hbv ) ]  
4or " " 

(1) (2) 
= ,J~a + .J~a (xp) (10.22) 

(1) 
The current ]~a vanishes if the metric is symmetric. All of  the above new 
effects, f rom the nonsymmetric  non-Abelian Jordan-Thi ry  theory concern- 
ing the Yang-Mil ls  field, are also obtained in the nonsymmetric  non-Abelian 
Kaluza-Kle in  theory (see ref. 23). I f  we put p = 1 or 'It = 0 we get the 
nonsymmetr ic  non-Abelian Kaluza-Klein  theory (see ref. 23). Now we pass 
to new effects which appear  because of the scalar field p (or q~). The scalar 
field propagates  according to equation (10.7). This equation is more of the 
Kle in -Gordon  type than the wavetype. We have here a term 

- 8 (  n + 2) or e -("+2)*(~u - 20 )  

= -8(n+2)or (e - ( "+2)*~vM-e(n+2)*!~([ ' ) )  (10.23) 

For the electromagnetic case [ G  = U(1)] we have only one term, 

-24or e-3~CPem (10.24) 

(see ref. 19). From observational data we know that the cosmological 
constant is very small (almost zero) and therefore this second term does 
not play any important  role. 

We know that 

/~(l") const or - c o n s t  (10.25) 
/z 

for very large tz and for this we can sometimes choose [for example,  for 
G = S0(3) ]  

]tz[-> 10127 (10.26) 
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Thus,  we really have only the first term 

- 8 ( n  + 2)~r e-(n+2)~yM (10.27) 

From observat ional  data  we know that the gravitational constant  is almost  
constant.  This means that  p --~ 1 or  q~ ~ 0. Thus,  we can expand e -("+2)* = 
1 -  (n + 2 ) ~  + .  �9 �9 in (10.27) and leave only the first two terms 

- 8 ( n  + 2) 1r e-(n+2)W~VM ~ --8(n + 2) ' t f ~ y M  -it- 8 ( n  q- 2 )27 r~yMXI  f (10.28) 

The term (8(n +2)27r~yM)a~ plays the role o f  the mass term for the scalar 
field �9 in equat ion (10.7). Thus, it seems that  the scalar field 'It is massive. 
This statement is also suppor ted  by equat ion (10.16); the trace of  the 
ene rgy-momentum tensor  for �9 is not  zero. Let us turn to the Lagrangian 
for the scalar field ~ :  

~soa~(~)  = ( m g  (''') + n2gE'~'qg~g(V~))xl2',, ,~,v (10.29) 

where m = ( l t a e l l E a c l - 3 n ( n  - 1)) and n = dim G. 
It is easy to see that in the electromagnetic  case [ G  = U(1)]  we get 

m = 0 and 

~ c a ,  ( ~ ) = g[ ~ ] g ~ g (  v~ )xlr, ~ ~ ,  v (10.30) 

i.e., the same formula  as in ref. 19. In this case if the skew-symmetr ic  part  
o f  the metric g ~  is zero, then the scalar field �9 does not propagate ,  

~scal(%I ~) ~ 0 (10.31) 

In  higher-dimensional  theory  (higher than 5, n >- 2) we get 

~scal(~tI y)  = - -3  n ( I'/ -- 1 )ff(3'v)X]f, vXI~ .,/ ~i~ 0 ( 1 0 . 3 2 )  

Thus, we have propaga t ion  of  the scalar field ~ in the symmetric  non- 
Abelian Jo rdan -Th i ry  theory.  In the nonsymmetr ic  case with l,b r lb, we 
get the same feature as in the electromagnetic case if 

m = 0  (10.33) 

This means that 

l[a~ll[a~l = 3 n (  n - 1) (10.34) 

In this case the scalar field �9 does not propagate  if the skew-symmetr ic  
part  o f  g,~ is zero. 

Summing  up, we get the following statement: the scalar field q: is 
p robably  massive. This has many  important  consequences.  First o f  all qt is 
o f  short range and has Yukawa-type behavior  

~ t r~ l  e -~r (10.35) 
?. 
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Thus, �9 does not violate the weak equivalence principle. The scalar force 
is of a short range. Thus, in our theory scalar forces connected to the 
gravitational constant (K  = e -(n+2)*) do not violate the universal fall of  all 
bodies. Due to the Yukawa-type behavior o f q  ~, we get that, at long distances, 
the gravitational constant K is really constant. 

Concluding, we see that the nonsymmetric Jordan-Thiry theory, com- 
bining Moffat's theory and Yang-Mills theory with the scalar field, is 
stronger than the classical Jordan-Thiry approach (or the Kaluza-Klein 
approach) combining general relativity and a gauge theory. 

In the nonsymmetric non-Abelian Jordan-Thiry theory there exist 
"interference effects" between the gravitational and gauge fields which are 
absent in the classical approach (neglecting the appearance of the cosmo- 
logical constant, which is a disadvantage of the theory, though it is possible 
to remove it in some approaches; see ref. 10). In the theory we get the 
following interference effects. 

1. A new term in the Yang-Mills Lagrangian 

1 
4~ l'~b(gt~'qHa~")(gt~lHb'~) 

2. A change in the classical part of the Yang-Mitls field Lagrangian 
in replacing hab by lob. 

3. The existence of the Yang-Mills field polarization of the vacuum 
M ~ o ,  which has a geometrical interpretation as a torsion in additional 
dimensions. 

4. An additional term in the Kerner-Wong equation (the equation of 
the motion for a test particle in the gravitational and Yang-Mills fields) 

2 ( ~o) ( lbag ~ -- ldbg~~ Ldr 

where m0 is the rest mass of a test particle and qb is its color (isotopic) charge. 
Tgauge with zero trace. 5. A new energy-momentum tensor , ~  

6. Sources for the Yang-Mills field, the current J~". 
7. The existence of  a scalar field �9 (or p) with an interpretation as a 

gravitational constant: 

g = e -(n+2)q~ 

8. The existence of  a cosmological constant qb depending on �9 with 
an asymptotic behavior for large tx 

( I ) ( / Z )  ~ e 2(n+2)qz  const (or ~const)  
/z 
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9. A new term in the equation of motion for a test particle with a scalar 
force: 

8m 2 \p2 /,t3 

in terms of a scalar field p, or 

IIqH 2 
4m 2 g e > ~  t3 

in terms of  a scalar field xI*. This force has short range, as do the fields xI* 
and p. 

10. A Lagrangian for the scalar field �9 and its interaction with the 
Yang-Mills field in which the Lagrangian of the Yang-Mills field plays the 
role of a mass term for the scalar field. 

11. An energy-momentum tensor for the scalar field �9 with nonzero 
trace. 

12. Results 10 and 11 suggest that the scalar field �9 is massive and 
has Yukawa-type behavior with short range. 

All of  these effects vanish if the skew-symmetric part of the metric is 
zero. We get classical results from Jordan-Thiry theory in the non-Abelian 
case with the propagation of the scalar field q* if n---2 (n = dim G) and 
with an enormous cosmological constant which has in front a factor depend- 
ing on xp. 

Finally, let us write the full Lagrangian of the theory using CGS units. 
One writes 

(n+2)xp 8"rrGN[ 1 \ e(2+n)xi, R(F) 
~=R(W)+2cr(AIx)2e ~yM -t- 7 ~8--'~ ~scal('ff/t 1) -t- 4 A2 

(10.36) 

where 

g 21p; g~ 
= h e '  ;t - ag = - -  (10.37) Olg 1/2' hc 

Note that the Ki l l ing- tar tan tensor h is proportional to the Tr tensor 
and in general the coefficient is not equal to -1 .  Thus, we really should 
redefine A in such a way that A2+ A2v, where 

h = - v  Tr 

The Tr tensor is commonly used to define the Yang-Mills Lagrangian. 
Let us remark at the end of this section that we have three equivalent 

forms of the energy-moment tensor for a gauge field in our theory. Let us 
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write them down: 

gauge(l) la b ~.. -w"~VL~ t b 

- ~ g . p [ L  " H . ~ - 2 ( g  L~ JH ..)(gLV JH v~)]~ (10.38) 

gauge(2) 4 ~ {  1 T~,, = - g'~t~L'%,L%~ - 2gt'~t3JH(%t~Hb)?~, - ~ g ~  

XL~rla'~t3rb~ o~p _ 2(gEO~13]H%t3)(g[VO.]Hbz, o_)]}j +18~r J ~  (10.39) 

where 

and 

Ju,, = 4lab ( La,~,~Lbt3,,g[~ ] _ L%~Lb g~.,~gt3~,g [~ 1) (10.40) 

gauge(3) lab f atxcr a T ~  - g ,~L H ~ - 2 g ~ H ( a ~ H b ) ~  
47r t 

1 r - -a~ . .b  -2(g[~]Ha~)(gE~"~]H%~)]]  5 (10.41) 

It is easy to see that 
gauge(l) gauge(2) gauge(3) 

g ~  T~t~ =g~t~ T~t~ =g~p T~t~ = 0  (10.42) 

Tg"~g~(l) has been considered in this section an energy-momentum tensor 
for a gauge field. They are equivalent modulo equation (4.10) and are 
analogous to the three kinds of energy-momentum tensors for an electro- 
magnetic field. 

Let us define two Ad-type 2-forms with values in the Lie algebra g 
(of G), 

--2"--" ~, ,  A O~X~ 
I _ - -  ! I / I  "a gll x - - 2 1 . 1  ~ v  ~" A O * ' X a  

One easily writes 

where 

s  O-4~-]~r = D - � 8 9  (10.43) 

Q = �89 A O"X, (10.44) 

Equations (10.43)-(10.44) give a geometrical interpretation of the form s 
i.e., a Yang-Mills induction 2-form in terms of the curvature and torsion 
in additional dimensions (gauge dimensions). This is similar to ref. 18. 
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Let us consider  equat ion (10.14a) in a three-dimensional  notation.  One 
gets similarly 

(aJlcd + lcda) " D d + Ice ( V  x H a ) = 21cdA" E d 

(bJlcd+ldcK) " D d - l d c ( w x n a ) = 2 b l c a E a - 2 1 c d W X B  a (10.45) 

(Vl~a - QIu~)D a = 21car" E a 

and 

(IcdK * l i  d - ld~A * f f l a ) + ( l c a W |  a - l d c U |  d) 

=21~dK * p e  + 21~dW| 

where for W, U, V, Q, a, b, K, and A we 

(10.46) 

have the following notat ions:  

a = ( g - l g T ) 4 4 ,  b = ( g T g  ')Ya4 

V = ( ( g T g - 1 ) 4 e )  , 5 = 1, 2, 3 

W = ( ( g - l g r ) 4 a )  , 5 = 1, 2, 3 

U = ((grg-~)64) , b =  1, 2, 3 

Q = ( (g - ' g r ) e4 ) ,  e = 1, 2, 3 

A r = ( ( g Z g - 1 ) a e )  , t~, 5 = 1, 2, 3 

K = ( (g - lg r )e~)  , 5, b =  2, 3, 4 

and * means matrix mult ipl ication in three-dimensional  space, | means 
the tensor  p roduc t  o f  three-dimensional  vectors, �9 means scalar p roduc t  in 
three-dimensional  Eucl idean space, and AE means the act ion o f  a 3 x 33 
matrix on a three-dimensional  vector. For  the remaining symbols we have 

E ~ = (Eaa) = (Ha4~), #t = 1, 2, 3 

D e = (Dee)  = (Ld4a), a = 1, 2, 3 (10.47) 

F a = ( H e  ) = ( e ~ B a ) = _ ( p r ) d  (10.48) 

and 

Ba = ( Ba~) = (�89 (10.48a) 

H" ( Ha~)  = ~ " = ( ~ e ~ L  ~ )  

In this way we lose the covariance o f  (10.14a), but  we get the relations 
between three-dimensional  vectors (Ea, B d) and (Da, H d) as in an 
anisotropic  Yang-Mil l s  dielectric medium. 

Let us suppose that D d = 0 and E d # 0. One gets 

V .  E d = 0  (10.49) 
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i.e., E d _L V and 

V .  H d = 2 A .  E d 

ldc(W X H d) =21ca(bE d - W x B  d) 

(l~dK * 171 d - Idea * 121 d) = 21~d(K * ~.a + W |  d) 

(10.50) 

(10.51) 

(10.52) 

Equations (10.49)-(10.52) can be considered the consistency equations for 
a dielectric confinement solution of the field equations, i.e., O d =  0 and 
E d ~ 0 (nonzero electric field and zero color-charge distribution). Moreover, 
in our theory there is a different tensor L, i.e., 

L d"a = g~"gWLar (10.53) 

and this tensor enters the second pair of Yang-Mills equations in our theory 
[see equation (10.6)]. Thus, we can connect vectors D d and H d to this tensor, 

D d = (Dda) = (Laa4) 

H d = (Hale) = (~eea'~L dr~n) 

In this case we should rewrite equation (10.14) in terms of La 'L  One gets 
dvp 6 T dtzp ld~g,~g,~oL + l~dg,~g gvpg~L  = 21cdg,~g ~rHd~r (10.54) 

One gets 

(2 ldcg44g [ r~ 4] -[- l~ag4ag a~, (gv4g4,n -- g44gvr~) ) D d,n 

+ (ldcg4eg,n4- lcdg4fg4agaVg~,,~)Hd,~ 

= --21cdg4agaaEaa (10.55) 

( lac ( g44g~6- gagg4m ) + lcd ( gaagaY g,yag &~ -- g4ag a~'grmgg4) ) Daa, 

+ (ldcgmgg4~ + lcdgg, ag4agaVgy~) ~Id,a~ 

= 2led (g4ag~effd~e -- gg~g~ dS) (10.56) 

( ldc (g,~4ga4 -- g44gar~) + 1cd (g44gasg ~Ygym + gaag S~gv4g4,~) ) Daa~ 

+ (ldcg,~4ga~+ lcdg4,~ga~g~Vgr~)IStd~e 

= - 2  l~aga~g~eE d e (10.57) 

( ldc(g~6ga4- g46gae) + led (gaog~Vgv4gs~- ga~ga~'gv~ggz) ) Dd~ 

+ (ld~g,~gg~,. + lcdga~ g a~gr~ggm) I SI d 

= 21~d (go~ga4E a +  g~ag~e~de) (10.58) 

Supposing D d = 0 (Dd~ = 0), one gets 

( Idcg4egm4 -- lr tTIdam = --21cdg4ag aeE d e (10.59) 

( ldcg~gg4e + lcdgg,~gaag aVgv~) lSld,~ = 21r Oe ffrd~e - gaag a4Ed~) (10.60) 

( ldcgm4gae + lcdg4rng ao ) ISIdrn ~ = -- 21,.dg aag aeE d e (10.61) 

( ldcgm~gae+ l~dg,,a, ga~g ~Vgvr)ISId,~ = 21ca (ga~g ~4Edr,+ ga~g aeff~dge) (10.62) 



Nonsymmetric Kaluza-Klein and Jordan-Thiry Theory 345 

Moreover,  we should mention that a separation into space and time com- 
ponents of  g~,  Hd~,  Ld~, and L d~ is possible only if we deal with the 
stationary case. We suppose this in order to have a physical interpretation 
of the condition Dde = 0. Otherwise, our considerations have a purely formal 
character. 

Equations (10.59)-(10.62) should be considered the consistency condi- 
tions for Dd~ = 0. Thus, we can treat them as equations not only for /~d , 
but also for g44, g4r~, gr~a under stationary conditions (the same conditions 
f o r / ~ a  , E d ,  pal) .  Thus, the dielectric confinement solution of the field 
equations can be derived from the second possibility, i.e., for D d obtained 
from L d~. A stationary space-time determines a three-dimensional manifold 
E3 defined by the smooth map qb : E --> E3, where ~ ( x )  denotes the trajectory 
of the timelike Killing vector fl. The elements of  E3 are orbits of  the 
one-dimensional group of  motions generated by 9. The 3-space E3 is called 
the quotient space E/G~. There is a one-to-one correspondence between 
tensor fields on E3 and tensors on E, T satisfying ~ T ~  = ~ T ~  ~ =2,~T~ ~, 
where ~ = g ( , ~ ) ~ .  In our case we have on E3 the following tensors: 
h(.~) = g(~)  + ( _ g ~ , j , ~ ) a / 2 ~ , ~  and an appropriate  tensor built f rom gt,,~l 
(~ = O/Ox4). The action of the group G~ can be lifted to the bundle _P and 
we get 53,to = ~ , y  = ~,nf~ = 2ntoas, where rl = 7r'r/. In our case we need a 
stationary condition for La,~, H~,~, L "'~. This can be defined on the bundle 
_/5, 2 , L ~  = 2nHa,~ = ~,~"~ = 0, because L~,~, Ha~,~ are defined on _P, not 
on E. In order to consider these conditions on E, we should take a local 
section e of  _P and define a homomorphism or: G~ -> G such that 

~*(h)Fa~,. = Uab(O- (h -~ ) )Fb~  (10.63) 

and the same for Bo.~ = e*La.~, A ~ = e*L a"~, where F~.~ = e*H".~, and 
~* means the action of the group G~ lifted to the bundle _P. It seems, however, 
that the best choice is to consider tensors on a space Y~3+. similarly as 
tensors on Y~3- In this way equations (10.55)-(10.62) have a correct meaning 
o n  E3+ n. The E3+ . is a smooth manifold of  orbits of the one-dimensioned 
group G~ generated by ~'*~7 = '1. In the case of  the static field configuration 
there is a natural way of introducing subspaces P3+. (orthogonal to the 
Killing trajectories). 

11. SPECIAL CASES 

Let us consider some special cases of  the theory. First of all let g~t~ be 
symmetric and lab # Iba. In this case we are able to solve equation (10.14) 
and we get 

L a = l ~ a c !  ~ d  [ 1 1  1 ~  
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The Yang-Mills  Lagrangian takes the form 

~YM = --.l~--[hbd + 2 . . . . .  , , , b . . , , d  (11.2) t x t~ t,r~cdjrl 1-I ,~, 
~5"n" 

where kCd = h~ekea. Let us suppose that lob = hab and g.~ ~ g ~ .  In this case 
we have 

1 
~YM - -  hab(2HOH b - La""Hba.)  (11.3) 

87r 

where H "  = g t ~ l H ~  and the relationship between LO~t3 and H o ~  is 

g~gWL~, ,~  + g~g~VL~ = 2g~,~g~VH"~v (11.4) 

Now there is no mixing in the gauge indices (no mixing of "color  charges").  
In the first special case we are able to calculate the polarization tensor M o ~  
and we get 

1 
M ' ~  =-4~ (8 d --h"~l~d)Hd,~ (11.5) 

In the first case we are able to make the cosmological constant as small as 
we need. In the second case we get the classical result with enormous 
cosmological constant. Let us notice that this case corresponds to the 
situation with /z = 0 or to the case lob = h,~b mentioned in Section 3. I f  
G =  U(1), we get 

where 

~ e m  = 8@ [2(gEU"IF"")2 - H""F..] (11.6) 

g.r  W H w + g~.g~ V Hr = 2 g,,~g~ V F~v (11.7) 

and we do not obtain the cosmological constant [U(1)  is Abelian]. 
Let us come back to the Lagrangian (11.2) and let us substitute 

kab = CCab Vc (11.8) 

from Section 2. One gets 

1 (1 II VH2~ 1 /.s 
3~VM=~_~ + / 2  n--- l /hbdHbu~Hd~'~+81r n - 1  VbHbU~vaHd~. (11.9) 

where 

[l VH ~ = --habV~Vb = const > 0 
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is a square of  the norm of the vector V. Thus, we get the sum of the usual 
Yang-Mills  Lagrangian (except the factor in front) and a new term 

2 
I~ VbHb~VVdHd~v (11.10) 

n - 1  

Let us now consider the first term in equation (11.9) for G =  SO(3). 
Thus, one gets 

2A 2 
- 8--~ (1 + j[z 2) Tr(H~*~H~,~) (11.11) 

Moreover,  in any gauge e (a local section) one finds 

g a ~ 
e*o) = ~ c  a . 0  X~ (11.12) 

where g is a coupling constant. For the generators X~ in an adjoint 
representation (Ad~) we use the following normalization condition: 
Tr({X,, Xb})= 2aob, where { . , .  } means an ant icommutator  of matrices. 
Thus, for the strength of  the Yang-Mills field one derives 

where 

e * H ~ : ~ c F ~  (11.13) 

f f  
F,.. = O.A. -O~A~. +~c [A., A,.] (11.14) 

Formula (11.11) can be rewritten 

1 2A 292 
8~ h2c 2 ( 1 + ~ 2 )  Tr(F~*~F~*~) (11.15) 

Moreover,  we should get a factor 8~rGN/c 4. Thus, one finally finds 

1 
a = 21pl [ag(1 + #2)],/2 (11.16) 

w h e r e  l m = (hGN/C3) ~/2 is Planck's length and ag = g2/hc is a dimensionless 
coupling constant for the Yang-Mills field. 

12. LINEARIZATION OF THE NONSYMMETRIC NON-ABELIAN 
KALUZA-KLEIN THEORY 

Let us consider (10.14) and rewrite it in a more convenient form, 

lac( ~'~t~ - 2gEt3~3g~'~) Ld~.,~ + led ( 8~',~ - 2gEs,qg ~')Ldth, 
= 2(8r~ -- 2gt~,qg~')Hdt3-flcd (12.1) 
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In this sect ion we will use a different no ta t ion  for  a K i l l i ng -Car t an  
tensor  on the g roup  G, i.e., P,b in the place  o f  hab. 

Let us expand  Ldt3~, into a power  series with respect  to h~t3 = g~r - ~7,r 
where  r/~r is a Minkowsk i  tensor  

(o) (1)  (2)  

Ld~v = Ld~v-b L d ~ v +  Ldt3v+ " ' "  (12.2) 

Using the fo rmulas  

1 2 
/zo~ g g ~ = ( ~ 7 " ~ + h " ~ + h " ~ + " ' ) ( r l ~ + h , ~ ) = 6 ~  

1 

h ~ = - ~ 7 ~ % 7 ~ h ~  

2 1 

h ~  = - ~7 ~ h ~ h ~  = ~ ~ 7  ~v~7 ~ h ~ v h ~  

g ~  = rl ~ - rl~%l ~t3 h ~  + rl'Vrl ~"rl'~t~ht~vh,~ + . . .  

one gets up  to the second order  

x (h[r + h[w]lcdLd~ ) 

= 21r162 - 4hi , f i  IcdHdl3v 

x (rl ~v - rl~'~rlV~ "q~rlvo,O'~h~hp,) (12.3) 

One  easily finds 

(o) 
~b . . . . . .  b ~ ( 1 2 . 4 )  L ~ = p lbcl-I ~3a = n 13a "q- [ z p  k b ~ H  ~,~ 

(~) 
L o~. = ~7 ~'p ac p bd lbe ( ht ~ l l~dH e~ v + h~ ~ l l d~H e~,,~ ) 

ac d ~T - 2 h ~ j p  IcdH Bvll (12.5) 

o r  

where  

(1) 
L ao~ = ( t~ae --[d" 2p ~bkbcp Cakde)rl v8 (hrt3~lH e~, ,_hE,~]H e~t3) (12.6) 

(2) 
a yt5 -to- a b c c L ~ = ~ ",7 h ( v , ~ ( k + b k _ ~ ) ( h t ~ l H  ~ -  hEr ~ )  

r ~ z  l a  ~ b  x c r l  
+ ~ r / Y ~ 7 /  ( K + b g - c ) p  Igrd 

d d + 2 h r ~ , l h t ~ , l H d v )  (12.7) x ( h E r , l h t ~ l H  ~ - h~r~lhtr ~ 

p "rPbr = 8% (12.8) 

ka.b = 8ab + ~parkrb (12.8a) 
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Using equation (11.8), one easily derives that 

( o  lfv k+bk_ c= 1+ ~ + Ix VaVc 
n - 1  ] n - 1  

Let us consider the Lagrangian for the Yang-Mills  field in the nonsymmetric 
non-Abelian Kaluza-Kle in  theory. We have [see equation (10.21)] 

~':M = 1 [__2pab(gt~]Ha ~ ) ( g [ ~ H b  ) 

+ (Pab + Ixkab)g'~g~"L'~,~Hb~,,] (12.9) 

Let us expand (12.9) into a power series with respect to h~v = g ~  - ~ ,  

(0) (1) (2) 
~VM = 3?YM+ ~YM + ~YM +" " " (12.10) 

Using (12.9) and (12.4)-(12.7), one gets after some calculations 

(o) 
21~ rsl~ "~ r r c  T r b  /3p. 3 ' a  

8"/'/"~YM ~--- (Pcb + t ~ n'crP "~'sb) 1"1 13V 1-1 #a'rl "rl (12.11) 

(1) 
8 ~r~vM = --2(p.b + Ixkab) r l~r l~r l  ~ [h (~)Ha~vHb~ 

+ (Ixp"~k~)(h(.~)+ h t .~ l )H '~vHb~ 

+ Ix 2p a~krpppqkqsh ['~1H ~ , H  b ] ( 12.12 ) 

(2) 
8 T/ '~YM = (Pab + Ixkab)HSovHbw~h-~o-ha~ 

r/ r/ r/ r/ j~+~  

a r 1 ) ' p .  7 a  t513 e tT 

,ylz e r a  e ~  ~ 7  a L r  
-- "q~/~'rlm~'tl ar ~'~ -- ~'1 rl "rl "O )(k+rK-s) 

_ n~n~n~n~ + n~n~n~r 
- �89 rl~%l~'rf3%l v~ - rl~rl~'~rl~%l v ~ 

-- ~P~crT]ctr1~B'3~ 3'e -}- ~l~tr~a'r~13fi~ Ye ) S a s }  (12.13) 



350 KaHnowsM 

In the first order of  approximat ion in h,~ = g.~ - r/,~ one gets 

1 
~YM = ~ ( P cb + I.z 2 kcrh rS ksb ) H Ct~ TH boo, rl ~ "'q -eo~ 

1 

4~ 
- - -  "t-t.z karh  k s b ) r l  ?'l "0 h(.o-)H CT H ~,~ ( Pab 2 rs ~o" tx'r TO: a b 

+ i x  harkr,(Pab + ixkab)(3sp +/xpsqkqp ) 
4r 

x r113~ ~'%17,* hE ,,~1HP~T H b . (12.14) 

It is easy to see that the last term in equation (12.14) gives a skewon-gluon 
coupling in the first order of  approximation.  I f / x  = 0, this term vanishes 
and there is no skewon-gluon coupling up to the first order of  approxima- 
tion. If/.t r 0 and kab # 0 we get skewon-gluon interactions in the first order 

of  approximation.  
We can find interactions between gluons and gravitons. This is similar 

to the usual case except for a factor in front [see the first term in (12o15)] 

(t) 1 [ 
~YM-- 4r ( P ' ~ b + t Z k ' ~ t ' ) ( 6 ' ~ s + I z p a r k r s ) r l r 1 7 6 1 7 6  

ar s sq t~ (pabq-p, kab)P k~s(Sp-bp~ p kqp) 
4r 

X rr~~ ~'~ ] ( 12. 15) 

The skewon-gluon terms are proport ional  to/~. They are given by the case 
of  coupling an antisymmetric tensor to the Yang-Mills  field. The gluon 
propagator  can be given by the zeroth-order term in the Lagrangian, 

(0) 1 
t~YM = ~ (Pcb  + I . z 2 k c r p r S k s b ) f r S ~ ' r l V a H C ~ T H b , ~  (12.16) 

This differs from the usual case by a factor in front. In the nonsymmetfic  
non-Abelian Kaluza-Kle in  theory the constant/x is connected to the cosmo- 
logical constant. Thus, we get a connection between the skewon-gluon 
interaction and the cosmological constant. In the case of  G = SO(3) we get 
in Section 7 that for/z =/Zo ~ -5.667 �9 �9 �9 the cosmological constant vanishes. 
Thus, we get a coupling constant of  the skewon-gluon interaction for 
G =  SO(3)---SU(2) .  We can choose I/-~l > 10127. In this case the skewon- 
gluon interaction is very strong. We also have a solution for other compact ,  
simple Lie groups, dim G > 4 (see Section 7). 
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Let us pass to the Lagrangian for the scalar field in our theory, 

~scal(XI y) = (mg(Vu)+ n2gD*"]gaj.g,(a~'))xtr,,.xP',.y (12.17) 

This field is uncharged. Let us expand 5 f~ (W )  into a power series with 
respect to h,~ = g,~ - %~. One gets 

(0) (1) (2) 
5r 3?~ca]+ 3?~ca~+ 3~sc~t+ " " " (12.18) 

where 
(o) 
LPsca,(~) = mrl~Pq~,~xF,p (12.19) 
(1) 
~scal(~t  t )  = -(mrl~%qpl3h(t3,~))~tr,~,p (12.20) 
(2) 
5fscat(~ ) = [m~7~rnPa~7~hr 

+ n2(~'[~ 
+ ,qo~[~,q v]~.rlp,~hl3o~h6v)].ff2.,~qt.p (12.21) 

~sr and the field �9 propagates even if Now we have a nonvanishing ~o) 
the skew-symmetric part of g~t~ vanishes, i.e., ht~] = 0. This is different than 
in the electromagnetic case. Let us suppose that the field �9 is weak: 

['tP' I << 1 (12.22) 

One easily gets 

e -~"+z)'v = 1 - (n + 2)q~ + (n +2)  ~ z + . . .  (12.33) 
2 

and 

e (n+2)~I' = 1 + ( n  + 2)~)" + ( n  + 2 )  2 ~iy2+ " �9 . (12.24) 
2 

The field �9 is the scalar field connected to the gravitational constant. Thus, 
is the scalar part of the gravitational field. Our approximation presented 

here is the approximation up to the second order with respect to h,~ = 
g , ~ - r / , ~  and ~ .  In this way one easily gets for the Lagrangian in the 
nonsymmetric non-Abelian Jordan-Thiry theory (except for the Lagrangian 
of the pure gravitational field from NGT) 

(o) (1) (2) 
8"77"r = 8"7T( ,=(~yM + ,,~yM + '~YM) 

(0) (1) (2) 

+ (~so.~ = ~sc.~+ ~r  ~r 
(o) (1) 

- ( n  + 2 ) ~ [ 8 7 r (  '~YM + ~/gYM) -- R ( F ) ]  

+ (n + 2)2.2(8.a.~VM +/~ (].,)) (12.25) 
2 
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It is easy  to see  that in this approx imat ion  w e  get the mass l ike  term for the 
field 

(n + 2) 2 (0) ~ 
XI'72(8 qT,~yM "~ R(F)) (12.26) 

2 
+ 

and an interaction term 

(o) (1) 
- ( n  + 2)xIr[87r(s + ~YM) -- R(F)] (12.27) 

The last expression (12.27) can be treated as the interaction of  the field xt, 
with source, i.e., 

g r j  (12.28) 

where 

(o) (l) 
J = - ( n  + 2)[8~r(2~VM + ~VM) -- R(F)] (12.29) 

is an external source for the field xp. In the first order of approximation in 
h ~  = g ~ -  7/u~ and �9 one gets 

8 ~rZe = (hob + I*~ kcrh rSk, b ) H C ~ H b ~  r l ~  r~ ~ 

--2(h~b+ 2 . . . . . . .  ~ t3~ ~ ~t,  u ~  u b  IZ t%~n ~sbjrl r I rl "(,~)** ~ * *  u= 

s 

~ ~ t~ r yc~ l ,  lr.g P g..g b 
x r I 77 r/ " b ' ~ ] ' "  ~ , ' "  ~*~ 

+ m (r / '~p --  r f * ~ r l  P ~ h ( ~ ) )  - �9 , ,~ "  p 

- (n+ 2),~[(h~b + ~,~k.h~%~)H%H~one~,7 ~-~(r ' ) ]  (12.30) 
i.e., we get an interaction term for the field �9 and h ~  enters into the kinetic 
term for ~ .  We have a skewon interaction with the field �9 and with the 
Yang-Mills field in the second order of  expansion. The field �9 interacts 
with the Yang-Mills field due to the pseudo-mass term. Despite this the 
field �9 is uncharged. The propagator of  the field �9 is as usual apart from 
the factor 

m = l [ d c ] I t d c ] - 3 n ( n  - 1) (12.31) 

This field does not propagate to first order if 

m = 0  (12.32) 

Let us remark on the convergence of  the series appearing here. They 
are power series with respect to h , ,  and they converge for sufficiently small 
h~,~. However, all of the functions of h.~ considered here (i.e., ~ L ~ 
~fVM) are well defined for any h,~. They are rational functions of  this 
variable. Moreover, the exact form of these functions is hard to get. 
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In this section we found the linear version of the nonsymmetric Jordan-  
Thiry theory (see refs. 28 and 29). We found the Lagrangian up to the 
second order of  approximation with respect to the gravitational field in this 
theory. We recall that in the electromagnetic case we found that the scalar 
field �9 does not propagate in the first order of approximation. Due to this 
we find that there is no scalar (monopole) radiation to this order. Simul- 
taneously, one concludes that in the first order of approximation the theory 
has nonvarying effective gravitational constant. This means that the variation 
of  the gravitational constant is at least an effect of the second order in this 
theory. 

In the general non-Abelian case we find that in the first order of 
approximation the scalar field propagates and couples only to the symmetric 
part of the metric. Due to this we find that the scalar field propagates in 
the first order of approximation. However, this field couples to the cosmo- 
logical constant and to the Lagrangian for the Yang-Mills field. Thus, it 
seems that this field is massive (pseudo-mass terms). Simultaneously, the 
trace of an energy-momentum tensor for this field is not zero. This indicates 
that this field is massive and has Yukawa-type behavior. Thus, it seems that 
there is no long-range radiation connected with the scalarons, which are 
massive. In order to prove this, it is necessary to find an exact solution of 
the field equations in the spherical, static case (similarly as for the Kaluza- 
Klein theory; see ref. 30) with Yukawa-type behavior for the field ~ .  
Unfortunately, such a solution is unknown. 

It is easy to answer what the spin content of the theory is (in the linear 
approximation). In the electromagnetic case it is (2, 0, 1)--a graviton, a 
skewon, a photon, n o  scalaron (see ref. 29). In the non-Abelian case 

(2, 0,1, 1,.._., 1,0) 

n t i m e s  

i.e., a graviton, a skewon, n gauge bosons (n gluons, intermediate bosons), 
and a scalaron. It is interesting to consider in more detail the interaction 
between the skewon field and the gauge boson (gluon, intermediate boson) 
field. This is an interaction between the generalized Maxwell field h~,~ and 
the non-Abelian gauge field. In the linear approximation of NGT, h t~  1 
enters the theory via its strength P~,~A = 0[~h[~]] carrying a zero spin. For 
the Abelian gauge field, h t~  l is connected to the Kalb-Ramond string field 
(see ref. 66). It would be interesting to examine this interaction as a 
possibility for confinement for gluons in the case G = SU(3). It is also 
interesting to examine this term in the context of string theory, or even 
superstrings. 

Let us consider the Lagrangian for the scalar field in the electromagnetic 
case (five-dimensional) (see ref. 29). For the spherically symmetric solution 
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in the nonsymmetric Kaluza-Klein theory of gravitation we have that 

12 
g[14] = r - ~  (12.33) 

where 12 is a constant proportional to fermion number in Moffat's theory 
of gravitation. The other components of gEU~l are zero; thus, the constant 
( I / /p02  in this particular case plays the role of  a coupling constant between 
scalarons and the metric, Ipj being the Planck length 

This is similar to Brans-Dicke theory, where we have a constant o) (see 
refs. 93 and 94). Now ( l / IpO 2 plays a similar role to w in the nonsymmetric 
Jordan-Thiry theory. If  12 = 0, the scalar field ~ really disappears, similarly 
as for w = 0 in the Brans-Dicke theory. However, the experimental predic- 
tions of NGT theory are very different from those in Brans-Dicke theory 
(see refs. 65 and 79). 

The last question which we can pose here is the problem of ghosts and 
tachyons in the nonsymmetric Jordan-Thiry theory. We know that the real 
version of the nonsymmetric theory of gravitation avoids ghosts and tachy- 
ons (see refs. 108 and 109). In the linear version of the nonsymmetric 
Jordan-Thiry theory (the Lagrangian is quadratic with respect to all fields) 
we have no ghosts and tachyons in the particle spectrum of gravitons, 
skewons, or gauge bosons. The only problem is the scalar field ~ .  In the 
electromagnetic case this field disappears in the zeroth order of approxima- 
tion. Thus, the five-dimensional electromagnetic case avoids ghosts and 
tachyons. In the (n + 4)-dimensional case we have in zeroth order of approxi- 
mation the Lagrangian for the field ~ .  In front of this Lagrangian we have 
the constant m. If  this constant is positive, m > 0, the theory avoids ghosts. 
Otherwise it possesses a particle with a negative kinetic energy. Thus, we 
have a condition 

l[dcll[dc] > 3n (  n -- 1) (12.34) 

and if (12.34) is satisfied, the theory is completely ghost-free. The condition 
(12.34) can be rewritten 

lab(e)lb~ < n(7 --6n) (12.34) 

Using equations (7.54)-(7.58), one gets for n > 4 

1 -/zs~ < n ( 7 - 6 n )  
~ 1 +/-*~i i = l  

(12.34b) 
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This inequali ty can be easily satisfied. Let e < 0 and let /x be such that  for 
i = io one has t + tx~'~ = e. In  this case one obtains 

1 - ~ g ,  2 
- - + - -  1 < n ( 7 - 6 n )  

i=l 1 q- ~( i  6 
ir 

[fie t is sufficiently small, our  condi t ion is satisfied and 1 + /x~  r 0. Moreover ,  
we need b~ to be a root  o f  c)(b~). 

Thus, this condi t ion can be treated as a criterion for a gauge group 
choice. For  example,  for G = SO(3) we get 

- 2 ( 3 6 + 7 / x  2) 
r e ( S O ( 3 ) )  -- 4 -1-/z 2 < 0  

Thv.s, we should reject SO(3).  We can avoid tachyons  if the masslike term 
is nonposi t ive,  i.e., 

n + 2  ~ - 
- -  R(F)  --< 0 (12.35) 

2 

This is also a criterion for a gauge group G. 
It is easy to see that the mass o f  the scalar field xt r in a linear approxima-  

t ion is 

M,in_n+2/ -.q(P) ),/2 
.v - ~ /~  \ - t x k d c l ~ d ~ ( n _ l )  mp,-----0 ( 1 2 . 3 6 )  

where 

Ch ~ 1/2 

rap1 = \ G T /  

is the Planck mass. The total mass of  the scalar field M ~  t is not  equal to 
M~n (nonlinear  interaction with remaining fields, i.e., gauge fields) and it 
can be found  f rom the Yukawa  behavior  o f  the static, spherically symmetric  
solution o f  the full field equation,  which we ment ioned before. In Section 
7 one finds that for large ix, R(I ' )  behaves like 

/~ ([.) C (12.37) 
/x 

where C is a constant.  Thus,  we get f rom equat ion (12.36) 

M,~n Mp, n + 2 { - C  ~ ,/2 
. ~ ~f~ \l~kdclCd,,~_3n(n_l)] (12.38) 

Accord ing  to (12o35)0 the constant  C should be nonposit ive,  C-< 0. 
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Finally, let us remark that in the linear approximation of  the Lagrangian 
for the scalar field �9 we can redefine 

1 
R * - + ~  vf (12.39) 

In this way we will be dealing with the usual Lagrangian for a scalar field. 

13. GEODETIC EQUATIONS IN LINEAR APPROXIMATION 

Let us consider a generalized Kerner-Wong equation in the special 
case p = 1, 

~ u  ~ qb q h 
lbdga~Hd~vuV + - - ( P b d g [ ' ~ ] +  l~kbdg(a~))Ld~vuV = O  (13.1) 

dr  mo mo 

dq b 
= 0  

dr 

where  qb is the color (isotopic) charge of  a test particle and mo its mass. 
Here, as in Section 4.10, we are using a different notation for the Killing- 
Caftan tensor, i.e., P~b in place of  hab. Using (12.6), one easily writes (13.1) 
up to the first order of approximation with respect to h ~  = g ~  - r /~,  

~ U  a qb q b 
--r I ~q n~,~)n ~vU ----I~kbdg]al3u ~/ 

dr mo mo 

de c d 2 dc cr~ c c x [ p  lecH ~ + ( 6  e--tX k k~)~l (hEzalH ~v-h[valH ~,)] (13.2) 

where 

k dc =pdapCbkab (13.3) 

Let us consider the Kerner-Wong equation in the general case for 
~ 0 (and not constant). 

We have one more term 

2 1 Ilqll ~ ffr IIq[[ ,~(=~){ '~ (13.4) 4m---~o e2"I'al2" ~ or 7---7 s 2 
" 8mo \ p  ],~ 

in terms of  the field p, and 

11 q [[2 = (_p~bqbq,) (13.5) 

[[ q[]2 is the norm of the color (isotopic) charge. One easily writes (13.4) up 
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to the first order of approximation with respect to h ~  = g ~ -  r/,~ and ~ ,  

Du,~ qb ~0 '0 71 n'ro" ) 1"1 ,By u -- # kbd'O a~ tl ~ d r  rno Ibd('Oag --  so- ~'rt a r rd  r 

• [hd~l~H~v + (~d _ tz2kd~k~e),lo-6(ht~lH~v _ htv~lH~ )] 

IIq[I ~ 
- 4m 2 ~ ( ~ 7  ~ - n~("n ~ h , ~ )  = 0 (13.6) 

It is easy to see that the skewon field h ~  1 has an influence on the motion 
of a test particle (13.2) and (13.6). The scalar field also has an influence on 
the motion in the linear approximation (13.6). 

14. E Q U A T I O N S  O F  M O T I O N  F O R  A T E S T  P A R T I C L E  AND 
G E O D E T I C  DEVIATION EQUATIONS 

Let us come back to equation (4.13) and consider it for p = 1 ( ~  =0) .  
One gets 

Du + q  1 
-~z moo Icdg'~SHa~---2 (Icdg~'e--ldcg~'~)Ld~ U ~ = 0  (14.1) 

qC 
-- const 

mo 

Due to the compatibility condition (4.7) we have (see refs. 43 and 72) the 
first integral of  motion 

"y(U('/ ') ,  U(T) )  = Y A B ) U A ( T ) u B ( ' r )  = const (14 .2 )  

o r  

g(,~ ~ u '~ ('r ) u~ ( r ) + habUaU b = const (14.3) 

Moreover,  due to the second of equations (14.1), we have 

habUaU b = const (14.4) 

Thus, we get 

y(hor(u(r)) ,  hor(u( r ) ) )  = g~u~(~')u~(,r) = const (14.5) 

We consider only const - O, because otherwise we get unphysical worldlines. 
Let us rewrite (14.1) in the following form: 

qC 
mo a'~ + qCg'~alcdu~Hd~8 ----~ ( / c d g  a a  - -  ldcgs'~)Ld~su ~ = 0 (14.6) 
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where 

and 

qb 
2U b = - -  (14.7) 

m o  

Ouo o(,% 
a"  - - -  - (14.8) 

dr  dr  \ d~" / 

is the covariant 4-acceleration of  a test particle. Let us consider an initial 
Cauchy problem for (14.7) such that 

x" 0-0)=x8 

dx ~ 
- -  (%)  = u8  ( 1 4 . 9 )  
dr  

g,~u'~ u~ = 1 

i.e., we consider timelike worldlines. Moreover,  we can proceed in the same 
way with null lines. In this case we should put m0 = qb = 0  and u b can 
have an interpretation as a coupling between a gauge field and a particle 
(i.e., a gluon). 

Due to equation (14.5) we have for every r - r o  

dx 
=1 (14.10) 

We give an interpretation of the additional term for the non-Abelian Lorentz- 
like force in equation (14.6), i.e., 

qC r l  ~ - - ~  I tag - Idcg ~ ) L at3~U~ (14.11) 

To do this, let us consider equation (14.6) without this term, i.e., 

mo a'~ + qC g~l~du~Hd~a = 0 (14.12) 

This equation is a simple generalization of the equation of motion for a 
point charged particle (Kerner -Wong equation), known in symmetric non- 
Abelian Kaluza-Kle in  theory, to the nonsymmetric  case. Now g~V is not 
symmetric and the covariant 4-acceleration is defined in terms of  the connec- 
tion o3~ on E. This connection is of  course compatible with the non- 
symmetric metric g ~ .  One easily checks that 

-~r g(~)  dr d r / = 2 q ~ g ~ g ~ l " d H a a ~ \  d r / \  dr / ~ 0  (14.13) 
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Thus, in general, equation (4.12) does not have the first integral of  
motion (14.5). This means that we are unable in general to preserve the 
initial normalization for the 4-velocity of  a test particle. I f  we want to have 
the normalization (14.10), we should add to (14.12) the auxiliary condition 

where 

For a null line we have 

and 

qb(u ~) = 0 (14.14) 

�9 (u  "~) = g ( ~ ) u ~ u  ~ - 1 (14.15) 

�9 ( u  "~) = g , ~ u ~ u  ~ = 0  

a "~ + u C g ~ I c a u ~ H d ~  = 0 

The auxiliary condition (14.15) is a nonholonomic constraint. This constraint 
is nonintegrable and nonlinear (quadratic in velocities). According to the 
general theory of mechanical systems with constraints, we know that in 
such systems we have the so-called reaction forces of constraints. Thus, we 
should write equation (14.12) in the following form: 

m o a  ~ = --2uC g ~ l ~ d u ~ H d ~  + Q~  (14.16) 

C~(U ~) = g~oU~U ~ -- 1 = 0 (14.17) 

Q~ is a reaction force of  the constraint (14.17). The force Q~ must be such 
that (14.17) is automatically satisfied during a motion. Let us find this force. 
In order to do this, let us multiply both sides of  (14.16) by g ( ~ u  ~ and 
integrate from ro to r. One gets 

�89 moCb(u '~) = �89 mo(g(,~t~)u'~u ~ - 1) 

= ( g ( ~ r  ~ - 2rnou~u~g(~r162  dr = 0 (14.18) 
TO 

For (4.17) satisfied, we get 

f "  ( g ( ~ r  ~ - 2 m o u ~ u ~ g ( ~ ) g ~ l ~ d u r  d~" = 0 (14.19) 
TO 

Moreover,  equation (14.19) is satisfied for every r ~  to. Thus, we get 

g c ~t3 ) u t~ Q ~ - 2 mo U CU ~ g ( ~t3 ) g ~ ~ l~du t3 H d ~  = 0 (14.20) 
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It is easy to see that equation (14.20) has the solution 

Q "  = 2 molcau C u V g'~a H d~,a (14.21) 

I f  we put (14.21) into (14.16), we get 

rnoa ~ = 0 (14.22) 

This solution has a simple physical interpretation. Equation (14.22) is an 
equation of  motion for an uncharged test particle. There is no Lorentz force. 
It corresponds to a choice u b = 0 or equivalently qb = 0. Let us come back 
to equation (14.20) and transform it using condition (4.10). One gets 

�89 Q '~ + �89 Q~ - moU~ U'Yue L d ~ 

X (lcdgt~g ~8 -- Idcg,~g ~ ) = 0 (14.23) 

Equation (14.23) has the solution 
c 

Q~ = - q  [Icdg ~ - ldcg ~")Ldr ~ (14.24) 

Thus, equation (14.24) gives us an interpretation for an additional term for 
a non-Abelian Lorentz force in equation (14.1) or equation (14.6). This 
additional term is a reaction force of  the nonintegrable, nonholonomic,  
nonlinear constraints. It  is easy to see that our constraints are nonideal, for 
Q~ is not proport ional  to a gradient of  qb. The constraints seem to be similar 
to the so-called servo-constraints. For a nonholonomic (nonintegrable) 
constraint we have the following statement: A variational problem with 
differential (nonintegrable, nonholonomic)  constraints cannot be reduced 
to a form where the variation of  a certain quantity (an action) is put equal 
to zero. This is true in the much simpler case of  linear nonholonomic 
constraints (ref. 73). Thus, unfortunately, we cannot formulate a principle 
of  minimal action for equation (14.1). Moreover,  we are still able to interpret 
the additional term in the non-Abelian Lorentz force as a reaction force of  
the nonholonomic  constraints (14.17). Moreover,  the force Q~ is absorbed 
by a geometry (it is geometrized). For a null line we proceed similarly. 
However,  one can try to formulate a local Gauss-like principle in order to 
derive equation (14.1). Thus, let us consider a local Gauss-like principle 
for this equation, 

6 Z  2 = 0 

modulo  constraints (14.15), where 

_ F 3' _ F ~ 
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The matrix f ~  is defined as follows: 

qC 
f~of % = 2mo ( lcag~ - g ~Clac ) L a~ = b ~  

f~o = g(p,~)f~c,, f ~ .  j ~  = ~ ,  d e t ( f ~ )  # 0 

Thus, f exists only if the matrix bS o is invertible and positively defined. In 
this case we are able to formulate a Gauss-like local principle for (14.1). 
Taking the variation of Z 2 and constraints with respect to a s (a covariant 
acceleration with respect to the connection F o v  on E) ,  one gets 

f ~ c f ~ ( m o a ~  - F ~) + 2 r f ' C g ~ p , ) f ' ~  g(~8)u ~ = 0 

where r is a Lagrange multipler. Using the definition of the matrix f~e, we 
get equation (14.1) and r = - � 8 9  

Let us calculate an acceleration function (an analogue of an acceleration 
energy) in this case. One gets S = �89 The other form of 
our equation is 

OS _ ~ .  + R~ = g ( ~ ) ( P r  + R e) 
Oa ~ 

where R~ is an ideal reaction force a n d / ~  is an external force, and 

Let us find the form of S ~", which is an inverse tensor of  S~e. One gets 

q~ 
S~v = --ffm~ s(~.)J- 7~,~7.v~, =-- '2  g ( ~ ' ~ ) ( l c d g V t 3  - -  l d c g ~ v )  " Ld l3~  = Sra 

where ~ S S ~  = 8 ~ .  Thus, we can reformulate a satisfactory condition of 
the application of our Gauss-like principle: 

1. det(SV~) # O. 
2. S ~ = S ~v. 
3. S is positively defined. 

Note that sometimes in theoretical mechanics one gets in the case of  
nonlinear, nonholonomic constraints a wrong equation from the Gauss 
principle, even though this principle is applicable for nonlinear, non- 
holonomic constraints. We mean here a well-known example given by Appel 
and Hamel.  Thus, the formulation of a Gauss-like local principle with 
nonideal reaction forces seems to be rather unexpected, even under some 
conditions. Let us recall that this example is connected to a motion in an 
extremal situation (a paramete r ~ ~ 0) and the constraints are quadratic in 
velocities (see ref. 123). The model with nonlinear constraints for the 
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Appel-Hamel  system is incorrect. Thus, we should be really very satisfied 
that in our case we get correct results (a correct equation of motion), even 
the reaction force is nonideal. Summing up, we conclude that we are able 
to get an equation of motion for a test particle in N2AK2T from a Gauss-like 
principle with nonlinear constraints, which is not commonly possible even 
in theoretical mechanics. We rewrite the satisfactory conditions for the 
applications of the Gauss-like local principle for equation (14.1): 

1. The matrix b~  is positively defined and invertible, de t (b ,~ )S0 ,  
where 

b ~  =q---2(tzkcdLd~+~ (1cdg'ag,~ - ldcg~'g~,~)rd~) 

2. b~r = br 
The force F "  is as follows: 

F ~ = qCg~IcdHdl3~Ul3 

During a motion the quantity Z 2 is minimalized modulo nonlinear, non- 
holonomic constraints (14.17). 

The constraints are nonideal and the force Q~ is a nonideal reaction 
force. The nonideal reaction force can be expressed by the ideal reaction 
force R ~ = r 0~/0tz~ = ru '~, r ~ O, 

Q~ = r  ~, ~ ~ 0 

q C ~a 
P %  = 7 [l~"g ~ - 1,cg )~% 

Let us consider the more general case of  geodetic equations where 
p ~ const. We have 

[ 1 ] if)US+ U ~ lcag~Hdp~ --~ (Icdg ~8 -- ldcg~)Ld~ 
dr 

]lOll2 ff(~) (-~12/ =0  (14.25) 
8m 2 \ p  /,~ 

q~ 
- -  = const (14.25) 
n o  

where [Iqfl -- (--h~bq~qb) ~/2 is a length of color (isotopic) charge in the Lie 
algebra 9 of  the group G. 

Let us find similarly as in the electromagnetic case the physical inter- 
pretation of  the additional term 

1 ]lOll2 ff '~")( 1 ) (14.27) 
8 m 2 \ P  /,t3 
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This term describes the scalar, velocity-indpendent force acting on the test 
particle. The force depends on the "chemical composition" of the particle, 
because it has in front the factor (llqll/mo) 2. Thus, it could be considered 
as a new type of force, maybe the "fifth force" (see refs. 54, 55, and 96-102). 
Let us multiply both sides of equation (14.25) by g(~:,)u in order to under- 
stand the effect of an action of  the scalar force on the test particle motion. 
One easily gets 

d--r mog(.o) dr dr /  8 mo ~ -~ (14.28) 

where 

and 

o r  

d x  c~ 
u c ~  ~ 

dr 

dr ,~ 

II q 112 _ const (14.28a) 
g ( ~  u~ue 8mo2p2 

which is a first integral of motion. 
Let us suppose that H ~  = 0 and (of course) L~u~ = 0. It is very well 

known that 

dx ~' dx ~ 
mog(~ dr dr Ep (14.29) 

has been considered the energy of a test particle in a rest frame. Thus, the 
scalar force is changing the rest energy of a test particle in the following way: 

dEp-Ilqjl2dr 8mo drd ( 1 )  (14.30) 

Equation (14.30) gives the first integral of motion 

Ilqll 2 
Ep - 8 m ~  2 - const (14.31) 

Thus, the energy of  a single test particle is changing during its motion 
according to (14.31). This result is easily understandable because of  the 
physical interpretation of  the field p. This field is connected to the effective 
gravitational constant 

Geff-= GNp (n+2) (14.32) 
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(GN is the Newton constant). It means that if  p ~ const the effective strength 
of  the gravitational interaction is changing during a motion and because of 
this the field p changes the rest energy of the test particle. Moreover,  the 
total energy of  a test particle in a rest frame and the field p is constant. 

In general the scalar force can act as a "friction force" or "amplification 
force" transforming the energy of a particle into the energy of the field p 
and vice versa. I f  the field p depends only on time, then equation (14.31) 
describes the change of  the energy of  a test particle due to the time 
dependence of  the effective strength of  gravitational interactions, in a 
composi t ion-dependent  way. 

Let us solve equation (6.2) in a weak-field approximation using an 
iterative method. In order to do this, we write equation (6.2) in a more 
convenient form, 

_ g ~ y  d _ Lbt~a = hbe(lcdg,~.g'VHdr leagc~.lg L ~, ldcg[or ) (14.33) 

and define the t ransformation 

(n+l)  (n) 
L b ~ b  ~ r e  (14.34) 

such that 

(o) 
L bt3~ = h bClcdHd[3~ (14.35) 

(n+l)  (n) (n) 

L b ~ = h b~(l~dg~g~Hdr _ icdgE~lg~,~ L d _ idegE~r L a ) (14.36) 

One easily gets 

(n+D (0) 
Ld#,~ = ( Mn+l )deg~B,  ~ L e.,, = ( Mn+l)detXV~o: h e f l f d H d  ~, (14.37) 

The power  (n + 1) means the (n + D-i terat ion of  the transformation (14.36). 
We get 

(n+l)  (n) (n) (n--l) 

La~,~ - L d[3c, = - h  bC[lcagt~,2g~V( L d3v -- L d t j y )  

(n) (n 1) 
+ IdcgEg~lg~'~'( L a ~ v -  Ld~v)] (14.38) 

Now let us suppose that the field g,~ is weak. This means that we assume 
that 

g,~ = B,~ + h~t 3 (14.39) 
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g ~  = ~7 ~ + / ~  (14.40) 

Ih~ l ,  I/7~1 < a << 1 

where ~ is the Minkowski  tensor. 
In  this case one gets 

g ~  ---- ~7 ~ - rl~r/V~hw (14.41) 

The skew-symmetr ic  t e n s o r s  Ld~ form a natural  6n-dimensional  vector  
space. Let us define the fol lowing norm in this space: 

IILIi = m a x  ]Ld~,~,l (14.42) 
/z,v = 1,2,3,4 
d = 1,2,...,n 

Thus,  our  space becomes  a Banach space. For  sufficiently small a one finds 

( n + l )  (n) (n) ( n - l )  

II L - LII -<~(~)I I  L -  L II (14.43) 

where 

if 

and 

0 < f l (a)  = 96n2/~(h + I~ lk ) a  < 1 

1 
Ol<~ 2 "  

96n h ( h + t g l k  ) 

h = max(Ihab]), /~= max(I/~,bl), k = max([Gbl) 
a,b a,b a,b 

Equat ion  (14.41) means that  the t ransformat ion is a contraction.  According 
to the Banach theorem, this t ransformat ion has a fix point  

such that  

( ~ )  (oo) 

L d = Mde~V3a L e (14.44) 

(co) 
�9 n dl .xv  ec d L d = ~,m(M ) ~ r l~eH .~ 

(oo) 

= M d~" heel H a e ~ cd ~,~ (14.45) 
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The limit is understood in the sense of the norm (14.40) and 

(00) 

Mae~o~ = !im ( M")de'~"t3o, (14.46) 

The limit (14.46) is understood in the sense of the usual linear operator 
topology generated by a topology of a Banach space. According to the 
Banach theorem, there is one and only one fix point of the transformation 
(14.36) (in a weak-field approximation). Thus, we get that 

( ~ )  

Z dl3o~ = M del~ Ul3 a h ~ l~f H f ,, (14.47) 

In this way we can rewrite the equations of motion for a test particle in the 
following way: 

Du'~.  Ul3 lcdg'~Hdr (lcdg~--lacg ~c~) 
d~" 

x Mde"~t~aheClcyHL~J Ilqll= 
8rn~ \ p  /.~ 

(14.48) 

Let us remark that, as in the electromagnetic case, we can consider 
different equations of motion for a test particle, i.e., 

and 

--~r2+(fl 3' dr d r  \ m o / \ d r /  

x[lcdg'~aHd~8--~(lcdg'~a--ldcg~)Ld~] 

Ilqll 2 . ( ~ ) [  1 
,_--Y-2_ 2 g -5 =0  
8mo \p J,~ 

(14.49) 

(q~0) = const (14.49a) 

Let us notice that equation (14.49) has the same integral of motion as 
(14.25), i.e., 

(dx~.~(dx,~,~ 11q[12 
g(,~t3) \-'~r J \ -~r  J -- 8m~p 2 = const (14.50) 
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In the case of p = const we get 

g,~13 ) \ - ~  ] \-d~ ] = const (14.51) 

Thus, we formulate the following theorem: 

Theorem IV: 
1. Let conditions 1-3 from Theorem III be satisfied (see Section 4.3). 
2. Let p = const. 
Then Theorem III is satisfied and one has the first integral of  motion 

of geodetic equations with respect to the connections (DAB and 05AB, 

3,(hor(u(r)),  hor (u( r ) ) )  = const 

Equations (14.49) and (14.49a) are geodetic equations with respect to the 
connection t~)AB defined on P such that in place of  the connection o3~o we 
put in (6.1) 

to r (14.52) 

where {8 ~ ~} is a Christoffel symbol formed for a metric g t~) .  We can also 
consider different Christoffel symbols formed for a metric p ~  = p ~ ,  where 

p,~g~'~') = ~ '  

and g'~~ is an inverse tensor for g~o. 
Let us consider a geodesic deviation equation in our theory, 

u B V  BI2 A -- [V B, V B]uAuB~ M = 0 (14.53) 

o r  

and 

HBVB1) A "1- RAcMBUC~MI.I B -- QNMBVNblA~MuB = 0 (14.54) 

UBV~uA=O (14.55) 

where u A = u A = dxA/ dT, I) A = d~A/ dT. 
In t h i s  way we consider a generalization of the geodetic deviation 

equations to the (n +4)-dimensional  case in a non-Riemannian geometry. 
Using equations (6.1), (6.11)-(6.16), and (6.22a)-(6.221), one gets from 
equation (14.54): 

(u~r  ~ + ~ ~  ~ - O~ ~(g3r  ~) 
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~(~) p flb,,v b 

.]_ 2 otto d d c 2p ( l~dg (2H o,t~ - L o,t~)L ~1~ + Idbg S'~Ld~,~Hb~)UV~ ~u~ 
qb 

+ 2mop---~ {2VE~ (p21dbg~ (2Ha~la - Lal~)) 

+ p21bag~(2Hdv~ -- Ld~,~) 0~'~ (I') 

_ p~('~#)p,/jlb~H~,, + 2plbdg ~ (2Hd[v.lt31 -- Ld[~I,ol))glsf,,]g(~V)p,.~}sr~u ,' 

_ ~ . ( , ~ o ~ ) ~  I L c l 
lat~ P , m  cd  13l~ I 

u ~ ( ~  qb 2pmo--'bu")+(2p41dtbllelf]g~'~g'VLd~rLe,/3 X 

+i(~'~ CPbf)U~( ' bo f~  
 2-2jo// 

_p41dflbfg,O,g~,/~Ld ( 2 H f / _ L f m ~  ) ~(oq) "(*~) �9 , {  qb X - g  p.r D,~lba'~2---~02 ) 

X ~au~--~" +(p~(~176 

( q b ~ q ~  
X \ 404m 2 ] -- (2p21bdg~'/~nd#~ + p2(Ibdg"/3 + ldbg/~")Ld/3r) 

f qb _ vbuv ) 
x(V,,u'~+~(Ifdg'#~(2Hd#3--Ld,,/~)(~o)))(VV2p2m ~ 

/ 

- 2p.p~(~)O.t~kb~(~oU'~+l(lbfg'~'(2Hdr_ _ -- L d ,.z. ) (~oo))) ( 2 - - ~ o p ) q f  qCvb 

+2(Hnu , . -L  ,~.)~p la.g L nt~u~--~p ~,('#~)p.tdb,\mo/ / 

X v" _ v,.uf~ _1__1_ O.",.b(f') p2ta.g~'~Ldaaur a(~,O)" 
2p 2 2p ~ P'O 

•  =0  (14.56) 
\ mo/ /  k mo/ 
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and 

d V  a ~ R bed  " n ~ " 
dr \2p2mo]  2p-~mo - 0 ,,,b(F)V. \2p2mo,] \2pZmo ] 

+ (2p21bagv~(2Hd[~q~ I - g d[=l~l) L ~l~l~J+pl 8,~bg~,~(~,,,)p,vO~ (p ) 

-28%V[, .  slaf.lg P , v l l |  ~ o 2 ~  
/ / \  P o 

+ (--p(,(:'t3)p,flb~L%t3 -- plba~,(t3=)p,=(2Hdt ~ -- Ld t3 )8=)  

b ~ ~ - ~ 1 • 

2 3 ~  a d l 

(, XI, I ,~ bbl3'--~Y 

~(  ~p. ) a'y d a U f l  
1 z(av)~ r o  +2pgv.g p,~g L ~fld[b8 r \4p4m2J  + ; ~r IJ,v ',-~ bc 

9 .  -(BY) *(T/3) , ~ a  {qb~dq...._~c~ 
-~-n,~g P,~g P,4b~cO d] 1 4 p 4 m ~ )  

[ - ,, ~ -v  - 2 
+ t 2 V t u L  ,S/3&S ,'e ~ '  t,~l~+L ~,0 ~ ( r ) + ~ o  ~(~,> u ~ 

2 r~ -(a~)_ "~ 1 - ~ ~ b 

- 2 ( H " . . - L " u ~ ) ( e  . + l g , . ~ , ( " ) p ,  vut~6 % v"u ~ 
\ \ 2 p  mo/  p 
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1 

( vbqC~ 
2p2mo] 

-- ( 2 p21bdg V~ Hd t  ~ + p2( lbdg v~ + Idbg~V) Ld~,) 

1 a ( qa 

+2  3gr162 qb +L r U +_g~gt Wp.~v U , = 0  (14.57) 
P 

Simultaneously, equation (14.1) is satisfied and 

qb = const ( , )  

is an integral of motion. Moreover, in this case we consider the flow of 
geodesic F(0.), o-~ U c  R', given by 

x A = x A ( r ,  0.)  

and 

\ 0 0 . '  00. /  ~=~o' 0.oe U 

0. is a parameter such that for every 0.1 ~ ~ xA(r, ~)  and xA(z, 0"2) are 
different geodesics. One can say that we have a family of geodesic curves, 
F(0"). The geodesic considered here is F(0"o), i.e., for cr = 0"0- Thus, 

- = - -  ( 1 4 . 5 8 )  dr 2p  2 \tool 
where p = p ( r ,  ~r)=p(x(r, o')). Thus, one gets 

Lop 0", o-) 
Thus, 

(~ a ( q ~ f~ d r y ]  dx 2 (14.60) 
=0-7 ~(0.) Lop~(7,;7/~o+a-V 

vO- dr 00. (0.) (14.61) 

v ~ is (of course) an Ad-type quantity. In this way we get 

dv a 0 (q_~ ~ 1 0 p )  (14.62) 
d~ 00" (~) 7 ~  . . . .  
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In this way equation (14.56) together with equation (14.1) gives us an 
interpretation of geodesic deviation equations in N2AJT 2. They are 
analogous to the deviation equation for charged particles moving in a 
non-Abelian Yang-Mills field and nonsymmetric gravitational field as well. 

Let us remark on a physical interpretation of the v e c t o r  C A ~- (C a, ca) ,  
The vector C A, "geodesic separation," is the displacement (tangent vector) 
from a point on the fiducial geodesic to a point on a nearby geodesic 
characterized by the same value of the affine parameter r. Thus, v a = ( v  '~, v '~) 

means a relative "velocity" and u B V ~ u  A a relative "acceleration" equal, 
according to equation (14.53), to a commutator of covariant derivatives. 
Thus, we get "tidal forces" in N2AJT 2 [(n +4)-dimensional  case], i.e., for 
charged (in the non-Abelian gauge field sense) test particles in N2AJT 2. In 
this equation we get gravitational "field forces" from NGT, Yang-Mills 
"tidal forces," and additional effects which can be treated as gravito-Yang- 
Mills tidal forces. The scalar field p is also a source of additional "tidal 
forces." 

These new effects are "interference effects" between gravitational and 
non-Abelian Yang-Mills interactions described by N2AJT 2. The commutator 
in (14.53) can be treated as the (n+4)-dimensional  analogue of "tide 
producing gravito-Yang-Mills forces." We can try to project our equations 
on a space-time E (they are defined on a bundle manifold P),  taking any 
local section e of the bundle P. In this way we get gauge-dependent charges 
Qa and gauge-dependent ~3 ~. 

We can substitute ~7 ~ into equations (14.56)-(14.57). However, we 
should substitute in place of d v " / d ' r  the expression 

d~ ~ 
- - _  ~ o  a c  , ,~. ,b (14.63) 

where as usual e* w = A a ~ O t ' X ~ .  

Finally, we remark that equation (14.56) represents tidal gravito-Yang- 
Mills forces and equation (14.57) is the relative change of ( q ~ / m o )  (~r) for 
different test particles via v a [or ( Q Q / m o ) ( O ' )  via ~7~]. 

15. CONCLUSIONS AND PROSPECTS 

Thus, we get a theory which unifies gravity, gauge fields, and scalar 
forces. The gravitational field in this theory is described by a nonsymmetric, 
real tensor g.~ (and a scalar field ~ ) ,  which connects it with Moffat's theory 
of gravitation (one of the most important alternative theories of gravitation; 
see ref. 34 for a review). The nonsymmetric Kaluza-Klein (Jordan-Thiry) 
theory has been previously designed as a unification of Moffat's theory of 
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gravitation and the electromagnetic (or Yang-Mills) field. However, there 
are some differences. First of  all, Moffat and his co-workers use extensively 
the Einstein-Strauss theory (see ref. 35), but  not the Einstein-Kaufman 
theory. The Einstein-Strauss theory in its hypercomplex version cannot be 
extended in any simple way to higher dimensions, even in the five- 
dimensional (electromagnetic) case. It is also a hard task to incorporate 
spin sources in the Einstein-Strauss theory. In both cases, we meet a 
fundamental  physical problem. The Lagrangian becomes hypercomplex 
(not real). In our case we do not have these problems because everything 
is real. In the case of the nonsymmetric Jordan-Thiry  theory, we effectively 
get the scalar-tensor theory of gravitation in the nonsymmetric version. The 
scalar field behaves very well in the linear approximation. It has been proved 
(see ref. 29) that we could avoid tachyons and ghosts in the particle spectrum 
of  the theory (if we put m > 0). In the case of classical Jordan-Thiry theory, 
the scalar field is a ghost (a negative kinetic energy). This new version of 
the Kaluza-Klein theory is capable of removing singularities from the 
solution of  coupled gravitational and Yang-Mills equations even in the 
case of  spherical symmetry. Such solutions have been found in the electro- 
magnetic case (see refs. 30 and 31). It is well known that in the case of the 
Einstein-Maxwell equations we cannot get any nonsingular, localizable, 
stationary solutions (the so-called Hilbert-Levi-Civita-Thiry-Einstein- 
Lichnerowicz-Pauli  theorem; see refs. 36-39). This result has been recently 
extended to the case of  non-Abelian gauge fields (see ref. 40). Recently 
some particlelike solutions of  Einstein-Yang-Mills equations have been 
found (see Bartnik and McKinnon, ref. 40). However, they are magnetic 
monopole-like solutions and not of electric type. 

Quiet recently, Mann (ref. 31) found eight classes of spherically sym- 
metric and stationary solutions in the nonsymmetric Kaluza-Klein theory. 
These solutions are more general than those from ref. 30 and some of them 
have no singularities in gravitational and electromagnetic fields. Some of 
these solutions possess a nonzero magnetic field and nonzero g[29] = f #  0. 
The nonsingular solutions are parametrized by fermion charge 12, electric 
charge Q, and a new constant u0. This constant is related to gt23~ in a similar 
way that 12 is to g[141. It plays a similar role for gE~] as magnetic charge 
for F~,~. We recall that the first exact solution found in ref. 30 has no 
singularity in an electric field and a finite energy. However, it has a weak 
singularity in gl~] .  In this case we put gt23j = 0. It seems that we can extend 
these solutions without any problems to the non-Abelian case. 

Thus, we can look for models of elementary particles as solutions of  
field equations. 

In the theory there are two field strengths for the electromagnetic 
(Yang-Mills) field, F,~, H~,~ (Ha~,~, La~) .  The first is built from (E, B) 
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[(E ~, Ba)], the second from (D, H) [(D a, Ha)]. The relations between both 
tensors are given by equation (6.2). 

According to current ideas (see refs. 103-105) the confinement of color 
could be connected to the dielectricity of the vacuum (dielectric model of 
confinement). Due to the so-called antiscreening mechanism, the effective 
dielectric constant is equal to zero. This means that the energy of an isolated 
charge goes to infinity. Now, there are also the so-called classical dielectric 
models of confinement (ref. 106). The confinement is induced by a special 
kind of dielectricity of the vacuum such that E ~ 0 and D = 0 (E a ~ 0, D a = 0). 
In this case we do not have a distribution of charge. This is similar to the 
electric-type Meissner effect. 

It is easy to see that in our case (the nonsymmetric Kaluza-Klein 
theory) the dielectricity is induced by the nonsymmetric tensors g,~ and 
lab. If g~ 3  = 0, D = E and B = H. 

The gravitational field described by the nonsymmetric tensor g,~ 
behaves as a medium for an electromagnetic field (gauge field). The condi- 
tions E # 0, D = 0 (E a ~ 0, D a = 0) can be satisfied in the axial, stationary 
case for F,~, H ~  (Ha,~, L~,v), g~ .  Thus, it is interesting to find the exact 
solution with axial symmetry for the nonsymmetric Kaluza-Klein theory 
with fermion sources for G = SU(3)c. This could offer us a model of hadrons. 

The axially symmetric, stationary case seems to be very interesting from 
a more general point of view. We have in general relativity very peculiar 
properties of stationary, axially symmetric solutions of the Einstein- 
Maxwell equations. These solutions describe the gravitational and electro- 
magnetic fields of a rotating charged mass. Thus, we get the magnetic field 
component.  Asymptotically (these solutions are asymptotically flat) the 
magnetic field behaves as a dipole field. We can calculate the gyromagnetic 
ratio at infinity, i.e., the ratio of  the magnetic dipole moment and the angular 
momentum moment. It is worth noticing that we get the anomalous gyromag- 
netic ratio (see Kramer et  al., ref. 107), i.e., the gyromagnetic ratio for an 
electron (for a charged Dirac particle). We cannot interpret the Kerr-  
Newman solution as a model of the fermion, for we have a singularity. In 
the nonsymmetric Kaluza-Klein theory we can expect completely nonsin- 
gular solutions (refs. 30 and 31). We can also expect the asymptotic behavior 
of  the Einstein-Maxwell theory. Thus, it seems that we probably get sol- 
utions with an anomalous gyromagnetic ratio. Such a solution could be 
treated as a model (classical) a spin-�89 particle. In the non-Abelian case 
[G---SU(3)c • U(1)em] this could offer us a model of a charged baryon 
(i.e., proton), where the skewon field gt,,l  induces a confinement of color. 
In this way, the skewon field g~,~3 plays a double role: (1) additional 
gravitational interactions (from Moffat's theory of gravitation), (2) a strong 
interaction field connected to the confinement problem. 
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It has been proved by Mann and Moffat (see refs. 108, 109) that the 
skewon field gE,~J has zero spin. In a linear approximation it is the so-called 
generalized Maxwell field (an Abelian gauge field). Thus, it is natural to 
expect an exchange of  some spin-zero particles in the nucleon-nucleon 
potential f o r  low and intermediate energies. We do not observe such parti- 
cles. However, we cannot fit experimental data for the nucleon-nucleon 
interaction without the mysterious 0- (spin-zero) particles (see, for example, 
refs. 110, 111). 

It happens that we need two such particles to fit the data. In our 
proposal, they are connected to the skewon field g[~,~l and to the scalar field 

from the nonsymmetric Jordan-Thiry theory. The reason we do not detect 
such particles directly seems to be clear now. They are confined, because 
they are actually a cause of confinement. The scalar field from the nonsym- 
metric Jordan-Thiry  theory induces an additional dielectricity of the vacuum 
[see Lagrangians for the scalar field �9 and for the Yang-Mills '  field in 
equations (8.1), (8.7), (10.6)]. Note that a function of the scalar field 
appears as a factor before the Yang-Mills Lagrangian in equation (8.7). 
This has some important consequences: the effective gravitational "con- 
stant" depends on W and in the fiat space limit g,~ = r/,~ the Lagrangian 
resembles the bosonic part of the soliton bag model Lagrangian if we put 

= - " 0-o = const (15.1) 

for n = 8 ,  G=SU(3)  [see refs. 112, 113). 
One finds 

1 l n ( 1 - c r  ~ ln2  (15.2) 
�9 lO 

and in the flat space limit one easily gets 

1 (  -- ~---)(h~b + tx2kCbkc~)Ha~H b~v Le=-~ 1 0-0/ 

0-op(/z) mo-~ 
+ 167r(0-0-o')  [-100(O'o-O') 4 "17 0-,~0-,v (15.3) 

The full Lagrangian (8.7) is more general and it contains a gravitational field. 
Friedberg and Lee (see ref. 114) consider the soliton bag model with 

a more general factor K(0"), 
1 a l z v  b ~=-zK(0-)h~bH H ~-la,0-a~0-- U(0") (15.4) 

They consider that the scalar field 0" is a new dynamical field with self- 
interaction given by U(0"). The quantity K is a dielectric constant which 
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depends on o-. It is interesting to observe many similarities between (15.4) 
and our Lagrangian from the nonsymmetric Jordan-Thiry theory, i.e., (8.7). 
Thus, in our model we have in the fiat space limit an effective dielectric 
constant 

Kerr = 4 e -l~ (15.5) 

It is interesting to notice that the scalar field �9 enters into the effective 
gravitational "constant"  and into the effective dielectric "constant"  in the 
fiat space limit. 

We recall that in a full nonsymmetric Jordan-Thiry theory (curved 
non-Riemannian space-time) we have the following symmetry for the scalar 
field (see refs. 19, 24): 

~ ~ '  = f ( * )  (15.6) 

where f is an arbitrary function. In this way the formulas (15.1) and (15.6) 
can be treated as transformations for a scalar field in the nonsymmetric 
Jordan-Thiry theory. Thus, we can connect a bosonic part of some soliton 
bag model Lagrangians via equation (15.6) in the nonsymmetric Jordan-  
Thiry theory. In this way we see some possibilities of connecting gravita- 
tional and strong interactions via the nonsymmetric Kaluza-Klein (Jordan- 
Thiry) theory. This is a little in the spirit of  the idea of strong gravity (see 
ref. 115). It is easy to see that in the nonsymmetric Kaluza-Klein (Jordan- 
Thiry) theory there are two metric tensors g(~) and f,~3 such that 

f ~ g ( ' ~ ' )  = 8~'t3; g~t~g = g ~ g  = 6 ~  (15.7) 

and it is easy to see that if gent31 = 0, then f ~  = g(~r 
Thus, we propose the Lagrangian of the nonsymmetric Jordan-Thiry 

theory as the bosonic part of the Lagrangian of strong interactions. Why? 
It seems that something is missing in the QCD Lagrangian. We have the 
following objectives: 

1. cr particles (which we mentioned before). 
2. An exact solution with color radiation (this means color at infinity-- 

no confinement) found by Tafel and Trautman (see ref. 116). 

Thus, it seems that the QCD Lagrangian is incomplete in the bosonic 
part. In our proposal, we replace the QCD Lagrangian by the Lagrangian 
from the nonsymmetric non-Abelian Jordan-Thiry theory for (3 = SU(3)c. 
In this way we can get a dielectric model of confinement and a soliton bag 
model-like Lagrangian (see refs. 112-114 and 117). 

Thus, we propose the following program of investigation: 
1. Find exact solutions of the nonsymmetric Kaluza-Klein and Jordan- 

Thiry theory in Abelian and non-Abelian cases with and without fermion 
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sources in the case of  spherical and axial symmetry, using inverse scattering, 
and the Riemann in"ariants method (ref. 118), and examine their classical 
stability (for example, Poincar6 stability). 

2. To find an effective interaction of  two axially symmetric solutions 
exactly, or, using some numerical methods in the case of  G = SU(3)c, with 
fermion sources. This could be similar to the nucleon-nucleon interaction 
in the Skyrme model. The solutions should be treated as particles using a 
collective coordinate method. 

3. To find wavelike solutions of  the field equations in the Abelian and 
non-Abelian cases. This could, in the electromagnetic case, offer a solution 
which could be treated as a kind of  electromagneto-gravitational wave 
(nonlinear wave) with nontrivial interactions between all fields. The objec- 
tive of  this hope is related to points 4 and 5 in the list of "interference 
effects" (we recall that the displacement current in the classical Maxwell 
equations leads to the nontrivial interaction between the electric and mag- 
netic fields--the raison d ' e t r e  of  the wave solutions for the Maxwell 
equations; however, this is only a historical remark). By a nontrivial interac- 
tion, we mean that the flow of  energy is possible from one field to another 
in a quasiperiodic way. 

One can try to use the following Ansatz for the simplest gravito- 
electromagnetic wave in our theory (see ref. 107) 

~, = g ( ~  ) dx  ~ | dx  t3 = ds 2 = Q (  dx  2 + dy 2) - 2 du | dv  - 2 H du 2 

g = A du ^ d x + B d u  ^ dy = g[~,,] dx  ~ ^ dx  ~ 

F = C du ^ dx  + D du ^ dy 1 I ~ = ~ F ~  d x  ^ dx  ~ 

H = E du ^ dx  + K du ^ dy  1 = ~ H ~ d x  ~ ^ dx  ~ 

where u = z -  t, v = z + t, and  

H = H ( x ,  y, u) 

A = A ( x ,  y, u) 

C = C ( x ,  y, u) 

E = E(x ,  y, u) 

Q = Q ( x ,  y )  

B = B ( x ,  3', u) 

D = D ( x ,  y, u)  

K = K ( x , y , u )  

are arbitrary functions of  their variables. In this case we expect that H ~  # 
F,v and the polarization tensor M ~  is not zero. 

There are also some proposals concerning cosmology: 
To find a cosmological solution of Bianchi type I in the nonsymmetric 

Kaluza-Klein theory with material sources (ref. 25). Homogeneous, plane 
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symmetric, i.e., Bianchi type I space-time in comoving coordinates, has the 
metric 

( o o w:, I 
-[3( t) 0 

g '~= 0 - f l ( t )  O ~ 

1 /  \ - w ( t )  0 0 

The electromagnetic strength tensor F~v has only 
components, 

F14=E(t) ,  F23=B(t)  

The same is true for H ~ ,  

H,4-= D(t) ,  /-/23 -= H(t )  

(15.8) 

two nonzero 

One easily gets E ( t ) =  D(t )  and B ( t ) =  H( t ) .  The Bianchi identity yields 
B = Bo -- const. 

Thus, the cosmological model in the nonsymmetric Kaluza-Klein 
theory is described by a( t ) ,  fl(t),  w(t), E(t ) ,  and a constant Bo. For a 
perfect fluid cosmology we should take 

T ~  = (p + p ) u~ u ~ _ pg~V (15.9) 

where the velocity four-vector u" is in comoving coordinates given by 

Hi=0  

u 4= 1 

T = g 'VT~  = p - 3p 

The four generalized Bianchi identities on G ~  = R . ~ - ~ g . v R  give rise to 
the set of  covariant conservation laws 

( (_g) l /2g~Tp~+.  .t/2 -~-r t - g )  g , ,pJ ,~+g~ ' ,p ( -g ) ' /2T~=O (15.10) 

We expect a completely nonsingular solution of the field equations and 
equation (15.10) for (15.9) and (15.8). It seems that the nonsingular behavior 
will be better than for nonsingular solutions in the Einstein-Cartan theory, 
where the metric and density of matter are nonsingular, but torsion and 
spin are singular. 

We propose a program of research which consists in finding exact 
solutions in this theory. These solutions could be treated as models of 
particles (generalized skyrmions; ref. 119). Our approach seems to be more 
realistic, because we include into the Lagrangian both gauge and gravita- 
tional fields. In the Skyrme model we have to deal with an effective model 
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of strong interactions. This model, despite many spectacular successes, has 
some problems. For example, a mass difference between nucleon and A 2§ 
particle. Moreover, the interactions between two skyrmions can give a 
qualitatively good description of  a nucleon-nucleon potential (ref. 111). In 
this way we could approach some classical nuclear phenomenology as in 
ref. 120. Moreover, there is a problem with a central attractive potential in 
the model. Our approach probably could improve this fact. 

One could search for axially symmetric, stationary solutions in the 
nonsymmetric Kaluza-Klein (Jordan-Thiry) theory using the formalism 
presented in ref. 121. Looking for axially symmetric, stationary solutions 
in the nonsymmetric Kaluza-Klein theory, we can try the following form 
for g~.~j, F~., H ~ ,  and g~.~: 

0 0 aae v aeV\  

0 0 a~e ~ fle'~l 

gt"~q= - a a e ~  - a f t  e" 0 00]  " 
- a a e  ~ - a f l e  ~ 0 

(,o o_  Oo o o Bo 
F,~=  Bz - B p  0 

Ep E~ 0 

,o o - Oo,I) 0 0 14. -D~  

0 

D o D~ 0 

and 

(15.11) 

(15.12) 

(15.13) 

g{o~t3) dx ~ @ dxt~ = ds 2 = e~ ( dz 2 + dp2) + X dp2 + 2 W dq ~ @ dt - V dt2 
(15.14) 

where all the functions a, a, fl, u, v, B~, Bp, Ep, Ez, lip, Hz, Dp, Dz, X ,  V, 
and W depend on p and z only. In this case we expect that F.~ # H,~ and 
we will get a nonzero polarization tensor M,~. 

Finally, let us reconsider equation (10.14) and rewrite it in a more 
convenient way using Ma,t3 defined in Section 10, 

To(g) = ldcg~gVaMdw~ + lodging M ~ - - ~  ( l,.dg~g~aHd~,~ -- l&,g~g~'rHd~,) 

= 0  (15.15) 



Nonsymmetric Kaluza-Klein and Jordan-Thiry Theory 379 

Equation (15.15) can be rewritten in a matrix form: 

T(g)  = g(g-~)T.  (l * M ) +  g T g - l ( l  r * M r)  

1 

4zr 
- - -  (g (g - ' ) r (1  * H ) -  g r g - ' ( l r  * HT)) 

= 0 (15.15a) 

where " T "  means a matrix transposition and "*"  the action of an n x n 
matrix on an n-dimensional vector. 

According to equation (10.14), the tensor La~r is expressible by H a ~  
and g ~ .  The equation is linear with respect to L ~  and can be solved. The 
quantity Ma~r has the physical interpretation as the polarization tensor for 
the Yang-Mills  field. Simultaneously, we get the geometrical interpretation 
of Ma~t~ as a torsion in higher dimensions (Qa=t ~ = 8 ,n -Ma,~) .  Thus, we 
come to the conclusion that it would be possible to reinterpret the theory 
as a theory with nonzero torsion in higher dimensions as a fundamental  
quantity. In this way the tensor g~t~ is a solution of equation (15.15) and 
Ha~,  and M a ~  are known quantities. Moreover,  equation (15.15) is non- 
linear with respect to g ~  and, because of this, more difficult to solve. In 
this way we reinterpret the full theory as a theory with torsion in higher 
dimensions. Thus, our theory has many similarities with previous 
approaches,  i.e., the Kaluza-Klein  theory with torsion (see refs. 16 and 17). 

Equation (15.15) can be considered a system of nonlinear equations 
for g = (g~p) c X. Moreover, we have to deal with n transformations defined 
in D ( T ~ ) ~ X ,  i.e., T~: X - ~ X ,  a = l , 2 , . . . ,  n. Equation (15:15) says that 

c D(  Ta ) = D ( T )  = {g, de t (g~ )  ~ 0} 

is a common root of  n transformations T ~. I f  such a system of equations 
is coherent, we can try to solve the system and to find ~. The system is 
coherent in an open neighborhood of ho ~ D ( T )  if 

dTllg=ho 

Rank dT21g=ho -= 16 (15.16) 

dTnlg-h o 

dTolg ho C B(~ ,  ~ ) ,  and 

Rank]dT~lg=~iol = 16 (15.17) 

for every a = 1, 2 , . . . ,  n. 
Thus, if equations (15.16) and (15.17) are satisfied, we can try to find 

~. Let us notice that if ~ satisfies equation (15.15), then x~, x # 0, satisfies 
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it as well. Equation (15.15) can be solved using iterative methods. The 
convenient method seems to be the generalized Newton method, i.e., the 
method of  W. L. Kantorowitch,  as in the electromagnetic case (five- 
dimensional).  

I f  the conditions (15.16) and (15.17) are satisfied, then one can choose 
any 1 --- ao-< n and consider the transformation Tao: X ~ X. The solution of  
equation (15.15) can be obtained from T~o(~)= 0 using the Kantorowitch 
method.  In particular we construct a sequence 

(b) 
g = ho 

(,~+1) (h) (n) 
--1 aO g = g - [ ( d T a o ) l < j  T ( g )  (15.18) 

g 

o r  

looking for a limit 

(o) 

g'  = ho 

( n + l )  (h)  (n )  

g' = g'--[(dT~o)lho]-lTa~ ' )  (15.18') 

(~) (n) 
g = lim g 

n~OO 

o r  

(~') (n) 
g = lim g'  

n ~ o o  

I f  the sequences converge, one has 
(~)  (~) 

T~o( g ) = T~o(g') 

and of course, because of equations (15.16)-(15.17), 
(~) (~) 

Ta(g)=T,~(g')=O for a = l , 2 , . . . , n  

The sequence (15.18) converges faster then (15.18'). 
One easily gets 

( d 1 H a ,  ) 
((dTao)[g)~",~ = ldao(6 ~' gVU- _ g~gV,'g,~) m ~,,~ - 4--~ 

+ la~ Md~/ 4~1 Hd7 ) 

(15.19) 
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and similarly (d2Tao)lg, which we do not write here. 
Finally, we get 

h~v = g [~](Md0,p, Hdm~) 

i.e., the skewon field induced by the Yang-Mills field and the polarization 
tensor. 

Let us note that we can proceed in the following way. We can calculate 
g ~ 3  induced by an electromagnetic field F ~  and its polarization M ~ .  After 
this we can substitute this tensor in equation (10.14), getting the Yang-Mills 
polarization tensor. In this way Fr and M ~  induce the skewon field and 
the polarization of the Yang-Mills field. 

A P P E N D I X  A 

Let us consider a more general form of the nonsymmetric metric on P 
in a lift horizontal basis, 

")tAB \ 0 ] Pab,I 

3, : ~'*g| (D) 

where Pab (/3 = PabO"| 0 b) is a nonsyrnmetric invertible tensor on a group 
G (negatively defined, right-invariant) and in general it does depend para- 
metrically on a point on a space-time E. In Section 4 it is supposed that 

Po6 = p21ab = PZ(hab q- pkab) (P  = p2l) (A.2) 

where p = p ( x )  is a scalar field on E, hab is a Killing-Cartan tensor on G, 
and kab is a skew-symmetric right-invariant form on a group (3. Now the 
general shape of an affine connection wAB defined on _P compatible in the 
Einstein-Kaufman sense with the nonsymmetric metric on P is 

- {  ) - e  . . . .  ~ 1 7 6  I ~ oe dog l~c~O Lt3vO - P  g ~ s N d e O  ~ (A.3) 
(DAB --  tyo~ d a c ea ~ o" ~ a 

\Pbdg ( 2 H w  t d , * ) O V + i b e ) O  I - P  g ~ N e b O  +tO b,l  

where 

(~) a b ~- F a b c O C  , PabP cb -= pboP be = t~ c a 

Compatibility conditions (4.7) for (DA B read, in terms of Ld~t3, N~de (which 
are Ad-type quantities), and I'abc (which is a right-invariant connection 
of  G)  

PdbFd~c + PodI'aeb = Pob, c -- PodCdbc (A.4) 

g'svPdbpCd N a c a  "1- gz"SPadpde N '3be  = -- P~b, v (A.5) 

Pa~ga~g~'aLa,~,~ + Pcdg,~aga~ = 2P~dg,~ag~'~Ha~,~ (A.6) 
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The  connec t ion  (A.3) is r ight-invariant  with respect  to the right-action of  
the group  G on P. 

Writing the geodet ic  equat ions  (5.1) in 03AB [see (A.1)] (i.e., for  F c P)  
one easily finds for  A = a [i.e., for  ve r (u ( t ) ) ]  

u ~ V s u "  = 0  (A.7) 

[V, ver (u)  = 0, where u is a tangent  vector  to F] or 

du" bL~ /u~u~_u~u~(P&g~aNa +pe~g~N~b)+[,~b~u~u b = 0  (A.8) 
dt 

In the classical Ka luza -Kle in  theory the geodetic  equat ion possesses the 
first integral of  motion,  i.e., 

du ~ 
- -  = 0, ve r (u ( t ) )  = const (A.9) 
dt 

Let us suppose  that  (A.8) has first integrals o f  mot ion  which are l inear 
funct ions  of  u ~, i.e., 

dv ~ 
- -  = O, v ~ = x%u b, v = ~ (ve r (u ( t ) ) )  (A.10) 
dt 

and 

such that  

u b -= ~b~V~, ver (u( t ) )  = ; ' ~ - I ( v )  (A.11) 

~2~bXbc = 8 ~  (A.12) 

and it is bi- invariant  [ R * ( g ) ~  = L*(g )~  = ~]. One finds, using (A.10)-(A.12) 
and (A.8), 

(Nab, c --Febcxae)blbuc -Jr- ur  (p '~  go~N~c~ 

+ p~ag~r3N~b + 2 ~/xf,~) - xd,~L"o~,uOu~" = 0. (A.13) 

Thus we get 

L ~ e  = -L~r/3 (A.14) 

(~ ~(<~) + Fe(bc)x ae) = 0 (A.15) 

paeg~aNace + peag~r + ~"y~f  ~ = 0 (A.16) 

For  nab bi-invariant,  it is constant  on every fiber and it can depend  only 
on a space-t ime point.  This yields 

xdb = X(x)6db, X(X) ~ 0 (A. 17) 

1 aS, 
=7 
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or ~ = ~(x)  ida, ~-1 = [1 /~ (x ) ]  idg, where id~ is an identical transformation 
in the Lie algebra g (of G)  and (A.16) reads 

paegt3~N%e + pe~g~t~N%e + 8a c x..~ = 0 (A.18) 

Compar ing (A.5) and (A,18) for every ~, g~,  N~b, and Pab, one gets the 
following conditions: 

Pab = P2l~b (A.19) 

where lob does not depend on a space-time point, 

N%b = Natab (A.20) 

2 
x = p (A.21) 

where p = p ( x )  is a scalar field on a space-time and N ~ is a function of  the 
space-time point only. This can be achieved in the following way. Let us 
consider (A.18) and transform it into 

g ~  [ p a e n r 6  1 ~ a ,st ~,, , , - ~ V  8 c)+g~(P~"N%,-Iv~8"~)-=O (A.18*) 

where V ~ = -(1/z)g(~V)x v, and V 6 is a function of x only. 
Thus, we get 

o e ~ r r  l ~ r c 3 ~ a  

ea  ~ r ~  1 v * 8 ~ a  
p 2v ~ = ~ v  o ~ (A.18**) 

for g~r an arbitrary nonsymmetric tensor. 
From (A.18**) one easily gets 

N%e =�89 (A.18***) 

Let us consider equation (A.5), substituting equation (A.18***) into it. One 
gets 

(In x),~" P~b = P-b,v (A.5*) 

One gets from (A.5*) the following formula: 

where lob is right-invariant and does not depend on x ~ E, i.e., (A.19)-(A.21). 
Thus, we get the connection (6.1). Demanding the existence of the first 
integral of  motion 

( ax~ ( 
y((hor(u( t ) ) ,  hor(u( / ) ) ) )  = g(~o)\-dT-jk-~j = const (A.22) 
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we get p = const (see Section 4.12). In this way we get Theorems I and II  
given in the Introduction. Roughly speaking, Theorem I establishes 
the nonsymmetr ic  (Eins te in-Kaufman)  G-structure (a right G-structure) 
with the usual interpretation of the geodetic equations as equations of  
motion for a test particle, i.e., possessing non-Abelian gauge-independent 
(and gauge-dependent)  charges satisfying the Kerner-Wong-Kopczyf iski  
equations. We can repeat  all the considerations for a left-invariant structure. 
I f  we calculate a curvature scalar density for a connection (A.3), we get the 
following expression: 

L ~ t c d ~  g - t - , a f t , ,  ~v--2Pcd(g H , ~ ) ( g  H ~ ) ]  

2/ a b  6 cd f c  ea  o' 
+g2/~(N obP ) ( N  ~dP ) - P  P g ~ N  ~ .Nf~  

of~ . . . . . . . .  ~ +2p~fpqcg2/~N~cNrq~ + 1" r g[,~s]lv ec 1~' fa 

-- 2~Tv(NV~bp"b)} + full(n + 4) - divergence (A.23) 

Let us consider some different aspects of  our theory. Let the tensor/3 defined 
on the group G be parametrized by x c E, and we do not suppose any 
invariant properties of  the tensor with respect to the action of G. Moreover,  
we suppose that the connection defined on the fiber bundle of  frames over 
_P is compatible with the nonsymmetric  tensor y (built with a help of  the 
tensor P). In this case we have the following theorem: 

1. Let conditions 1-4 of Theorem I be satisfied except for the fact that 
/3 is right-invariant with respect to the right-action of the group G 
o n  _P. 

2. Let the curvature scalar of  the connection wAB, (O3), be invariant 
with respect to the right-action of  the group G on the fiber bundle 
of  frames over (_P, 3') (lifted from the bundle _P). 

Let condition 5 from Theorem I be satisfied. 
Thus, 15 is right-invariant with respect to the action of  the group G 

and it has a factorization p roper ty /3  = p21, where p = p ( x )  is a scalar field 
on E and 1 =labO ~ | 0 b is a right-invariant tensor on the group G. 

The p roof  can be easily obtained directly from the form of the curvature 
scalar equation (A.23) in the case of  symmetric g and arbitrary H"~,, 
(arbitrary to) modulo equations (A.5), (A.6), (A.14), (A.16), and (A.18). 

In Section 3 we mention the right-invariance of  the Einstein connection 
on (P, 3')- What does this mean? 

Let ~ :  G x P o  P be a right-action of  the group G on P and let qb*(g) 
be a contragradient map to qb'(g), a tangent map to qb at g ~  G. Let 

: G ~ G L ( n  + 4), ~) be a homomorphism of groups and let us consider a 
connection o3 on a fiber bundle of  frames over P with a structural group 
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GL(n + 4, R) compatible in the Einstein-Kaufman sense with the no nsym- 
metric tensor y (see Section 1). The connection is right-invariant with respect 
to the action of  the group G on P if one has 

~*(g)o~ = AdGL(.+4, R)(Y.(g-1))o3 

(c~ is an action of G on P lifted to this bundle) or for any local section E 
of the bundle of frames over _P, 

~*(g)F=Ad~L(.§ R)(E(g-1))F+E-1(g)dE(g) (A.24) 

where F = E*o3, F = FAucOCXBA, and XBA are generators of the Lie algebra 
gl(R, n + 4 )  of the group GL(n +4, •) and AdGL(.+4,R) is an adjoint rep- 
resentation of GL(n +4, ~). Thus, one gets 

cb*(g)ra'B,c, = EAA(g-1)FABc'~.BB,(g-1)'~.Cc,(g -1) 

+ E-1A'A(g)dcEAB,(g)ECc,(g) (A.25) 

where dc is a vector field duel to 0 c. The reper transforms 

dp* (g) 0 c = ~c c,(g-l) 0 c' (A.26) 

Let us take the lift horizontal basis. In this case one gets 

where gab(g ) = (Adc(g))ab is a matrix of  the adjoint representation of G. 
Thus, we have 

og*(g)O '~ = o ~ 

�9 *(g)0 a=  Ua,~,(g)O a' (A.28) 

qb*(g)F~v = F ~  

, I , * ( g ) r a ' o , ,  = U~'a(g- ' )Fa~ , , ,  (A.29) 

qb*(g)Fa't3,~, = Ua'a(g-l)F~ ) 

q , * ( g ) r ~  = U"'  ( g - ' ) r % ~ U b ' b ( g - 1  ) 

dg.(g)F,~'t3,o,= FatroU%,(g 1) 

For W~ = ['~b~O ~ one gets 

�9 *(g)to"'b ,= UO',(g-l)to~ (A.30) 

Thus, we get the Ado property of Ld~,~, N~b~, and equation (7.18) for F~b~. 
In this way FOb~ has tensorial properties in the lift horizontal basis (Ad type). 
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Moreover, equation (A.30) has a natural interpretation as a right- 
invariance of  the connection O~ab with respect to the right-action of the 
group G on G. The second equation of (A.28) means the Ad property of 
the connection on the principal fiber bundle _P (a gauge bundle). 

Equation (A.30) can be rewritten in the more familiar form 

R*(g)F=AdoL(n,n)(fg(g-1))['+~-l(g)d~(g) (A.31) 

where f" = o3 a b Yb a and g b  a a r e  generators of  the Lie algebra gl(n, R) of the 
group GL(n, •) and Adoun, R) is an adjoint representation of  GL(n, R) and 
R is a right-action of G on G. Here 

f~: G~GL(n,R) (A.32) 

is a smooth homomorphism of groups such that 

Y-ab(g) = (Adc(g))ab = U"b(g) (A.33) 

In this way we come to the notion of the fiber bundle of frames over a 
group G and to the right-invariant connection defined on this bundle. 
Equation (A.31) can be rewritten 

A 

R*(g)03 = 03 (A.34) 

where 03 is a connection on the principal fiber bundle of frames over G 
with the structural group GL(n, R) and 

[" = f ' 0 3  (A.35) 

f is a local section of  this bundle. /~ is an action of G on G lifted to the 
bundle of frames. 

Note that our considerations are valid for any connection defined on 
a fiber bundle of frames over _P, not only for the Einstein-Kaufman one. 
We can say the same for a connection on a fiber bundle of frames over G. 
The above considerations justify some Ado properties of  wAe defined on 
the manifold P (a gauge bundle) and O3~b defined on G (a group manifold) 
(see Section 3). They are treated there as 1-forms defined on P or G 
according to our conventions from Section 1. From (A.24) one easily gets 
transformation laws for the curvature 

~ * ( g ) ~ = f i  (A.36) 

and from (A.34) 

/~*(g)~ = I~ (A.37) 

For the curvature scalars we get 

~*(g)R(t~) = R(o3) (A.38) 

R*(g)R(t~) -- R(03) (A.39) 
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According to Section 4.5, the connection 03 on the fiber bundle of frames 
over the group manifold G can be induced in the following way. Let us 
define a principal fiber bundle I I  over G with a structural group G and a 
projection 7to. Let us define a connection ~ on this bundle as right-invariant 
with respect to the action of the group G on G, i.e., 

R * ( g ) ~  = ~ (A.40) 

= "~ax  a (A.41) 

Taking any local section f of  the bundle, one gets 

f * ~  = "~ab l )bx  a (A.42) 

where V b are right-invariant forms on G. The quantity E~b induces in a 
natural way a connection on the fiber bundle of  frames over G [see equations 
(7.9)-(7.11) for dim G > 4  such that 

reabVa A V b -~- d "~e (A.43) 

Now we can construct a connection on the bundle II  using the connection 
defined in Section 4.5. One has 

1 /x 
E~b = ~ 6 ~b - -~ k~b (A.44) 

in a local section f of  H. 
The corresponding curvature can be easily calculated, 

f i g  = d'~ +�89 ~3 (A.45) 

Thus, 

f : g ~ G  , 4 ~ 1 1 [ ~ c  ~ a  --'~ ,..~ ~"~ -- ~,..-, abe---, d'~.be vd  A e (A.46) 

o r  

Fdab ~- C d e f ' ~ . e a ~ f  -~- C e a b ' ~ d  e __ Cdeb"~e a -1.- Cdea"~a b = rdab -~- C d e f ~ . e a ~ . f  b 

(A.47) 

Taking equation (A.44) and substituting it into (A.47), we get 

2 

- 1  C ab ~ ' - - ~  CdefkeakY b Fdab = T d I z I ~ r f ,d  b f  _ Cdebke )__6  --~-4 k ~'" af n" b CPabkdp 

(A.48) 
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In the case of /x  = 0 (this corresponds to the Riemannian connection on G) 
one gets 

Fdab = --~Cdab ~ 0 (A.49) 

Changing the s ec t i on f  to a section e, we transform E into -~ in a well-known 
way (the curvature transforms similarly). Thus, we have it in any local 
section of  H and we can derive E. 

A P P E N D I X  B 

Let us consider the equation of motion for a test particle [equation 
(14.25)] in the limit of  the special theory of  relativity (i.e., g,~ = r l~) ;  one 
gets 

de (lahHb~U~ + tXkabLb~U~) 8mg \p2],r  

where q~ = const is a gauge-independent  charge. Using equation (11.1), one 
gets 

d'c (hab--2tXk~b--I't2kdakdb)Hb=t~Ul3 Ilql12 ~ 1 x I rl ~ ] , t  = 0  (B.2) 

where kd~ = hdeke~. 
This equation has an integral of  motion 

Ilqlf 
~ u ~ u  ~ 8mgp 2 = const (B.3) 

Let us find an interpretation of  the integral of  motion. In order to do this, 
let us define the four -momentum of a test particle in the usual way: 

p~ = mo u~" (B.4) 

One gets 

~l~p~p ~ Ilqll2 = const (B.5) 
8p 2 

In the case of  p = 1 we should get the usual formula from special relativity, 
i.e., 

n,~p'~p t3 = m~ (B.6) 

Thus, we obtain 

~7~p~ pr3 = mo[ l +----ff -- - 1  (B.7) 
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o r  

E 2 p2 2I- Ilqll 2 1_ 

Thus, we should define the four-momentum of a test particle in a different 
way, i.e., in the place of mo we should put 

m2[ 1 + [[qllz { 1 1'~ ll/2 
-5- \~ -  ] 3 ='~~ 

Equations (B.7) and (B.7a) give us a scalar field correction to the rest mass 
of a test particle. Now we can write some well-known formulas from special 
relativity generalized to this case: 

~o(p) 
E ( 1 -  V2) ~/2 (B.8) 

mo(p)v 
P = (1 - V2) 1/2 (B.9) 

where 

[- 11q[12 1_1)1~/2  
, ~ o ( p )  = mo[1+--2- (y (B.10) 

and v is the velocity. 
This gives us scalar field corrections to the famous Einstein formulas. 

In this way we get the scalar field-dependent rest mass of test particles. For 
the rest mass real we get the condition 

Ilqll 
[pl-< (ll q ll2_ 8)1/2 (g.11) 

and 

IIq112>8 (BA2) 

In terms of the scalar field ~ one gets 

ffto(*)=moIl+~-~(e2"I'-l)l '/2 (B.13) 

Thus, there is a maximum value of the scalar p (or ~ )  for which the special 
relativistic interpretation breaks down. This seems to be resonable because 
of the interpretation of the scalar field p (or ~) .  One has 

Geef = G N p  ("+2) = G N  e -(n+2)'p (B .14)  
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This means  that  we have  to deal  with a very strong gravi ta t ional  field, i .e.,  

~ oo (B.15) Ilqll ~ 
Gemff ax= G N ([iqlf_8),/U ,iq,=~8 

For  such a value of  Ge~ even the gravi ta t ional  field of  a test part icle  is 
strong. N o w  we go to an establ ished f r ame  with Car tes ian  coordinat ies  
(x, y, z) and  a t ime t. The  equa t ion  of  mo t ion  for  a test part icle can be 
wri t ten in the f rame  in the fol lowing way. Let us define 

84 dt [l+~llql[2(1/p2-1)] '/2 
= d-~ = (1 - -  / . ) 2 )1 /2  (B.16) 

us=dx s v J [ n q l 8 l - / l \ - l ' / a  
d , r -  ( 1 -  ~)1/2 1+ ~ 7 - -  1 ) ]  

dx j [1 +~llq II~(1/P ~ - 1 ) ] ' "  
= dt (1 - v2) '/2 (B.17) 

j = 1, 2, 3. Thus,  we get f rom equat ion  (B.2) 

= a b ( E b + V X H  b )  

I lq l f (  l - v 2  ,~,/2 { 1 
+-~m~ \l+kllql--~(~-]-p2_l)fl v\-~] (B.18) 

and  

where  

dtd[( l+~l]ql12(1/p2-1)'~'/21-~--~ ] J 

= - -  ab E b  �9 V 
\ mo/ 

+ Ilqll: (l+~llq}12(@2P2-')) ' /2d (~2) 
8m 0 

gob = h~b + 2t.tkob -- t*2kdok~b 
E b b = (Hl4 , Hb4, Hb4) 

is the electric par t  o f  the Yang-Mi l l s  field and  

B b b b H31 : (H23, H~2) 

(B.19) 

(B2o)  

(u.21) 

(B.22) 
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is the magnetic part of the Yang-Mills field. Let us define the kinetic energy 
of  a test particle 

(1  ) 
EK = E - trio(p) = r~o(p) (1 - v2) 1/2- 1 (B.23) 

Thus, the scalar field p (or ~ )  plays the role of the so-called rest mass field 
(see ref. 122), which is quite natural in scalar-tensor theories of gravitation. 

Let us reconsider equation (14.25) for a zero too. One gets 

dr VagabHbat3Ut3 8 ~ = 0 (B.24) 
,13 

rl,~u~u t3 = 0 (B.24a) 

where v a -- const and is a measure of the coupling of a test particle to a 
gauge field. Thus, we consider an ultrarelativistic case, i.e., a massless 
"gluon" in a gauge field. 

Equation (B.19) defines the change of  the total energy of a test particle 
and it can be rewritten 

�9 . v +  I[q[ lE{l+~[lql- lz (1/~ 
t = --qa gabEb 8m 2 \ 1 - v 2 dt \p2]  (B.25) 

Equation (B.18) can be rewritten in the form of a relativistic equation of 
motion in an established frame with Cartesian coordinates, 

dp qagab(Eb d_v• (B.26) 
dt -~m~\l+~]lq]12(1/p2_l)] V 

Let us take the nonrelativistic limit of (B.9) and (B.23) (i.e., small velocities) 

I- I J J l / 1  \ 7  2 1/2 
15" . . . . .  ' m~ [1 + " q " e [ = -  1 / |  v 2 (B.27) 
" ~  - 2 L  8 \p~ )J 

P . . . . .  ,=mo[l+llqll~( 1 1~] '/~ - - ~ - \ ~ - 5 -  ] j  v (B.28) 

and equations (B.25), (B.26), 

dE~ . . . .  ' _  +q ,g ,  bEbV I[qll 2 d ( 1 )  
dt 8mo[1 +kllqll2(llp 2 -  1)] '/2 ~ ~ (B.29) 

dp . . . . .  1 ,[qlf (~) 
d ~  - gOg~b(Eb +v X B b) -8too[1 +k]lqlf(1/p ~- 1)] '/2 V (B.30) 
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In the electromagnetic case we get similarly 

dE~ . . . .  I q2 d / l \  
- - q E  �9 V+~m m dt 

dp . . . . .  l q(E+vxB)+ q2 v (  l ~ 
dt 8m \p2J 

where 

(B.31) 

(B.32) 

and 

p = l + A p  

I~xpl << 1 

On the other hand, we have 

Ge~ = GN +AG~-  GN(1 + ( n + 2 ) A p )  (B.36) 

where 

m L 8 \p~ 

E is the electric field and B is the magnetic field, and q is the electric charge 
of a test particle. Equations (B.30) and (B.32) can be considered as the fifth 
force correction to the nonrelativistic motion of charged test bodies. Simul- 
taneously we get that the inertial (nonrelativistic) mass depends on the 
scalar field p (or ~ )  and this dependence is "chemical composit ion" 
dependent,  

=mo[l+llq[12[1 ~]1/2 
19/ I . . . . .  L 8 \p2 1]J (B.33) 

The mass too, because of equation (B.1), has the interpretation of  the 
gravitational charge of a test particle. This means that it is a passive 
gravitational mass. Thus, one gets 

/ ' g / i n e r t i a l  i-l+llqll=(• )],,2 
mgrav.passive L 8 \p2 1 (B.34) 

In this approach the law of  gravity is universal, but the inertia depends on 
the composition of a body. This is exactly the reverse of other approaches. 
Thus, the scalar field p ( ~ )  plays the role of  a "rest mass field." 

Let us calculate the scalar field correction to the inertial mass of  a 
charged particle, 

m i n e r t i a l  mo+Am(p)-~mo + llqll2 = - -  Apmo (B.35) 
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Supposing that the field p does not change much spatially, we can derive 
a small correction to the Lorentz force in (B.30), 

dv q~ 2(Ap) dv 
dt-mo~,ab(Eb +vxB)+JiqJJ -~  ~ (B.37) 

This correction can be tested experimentally because it is easy to extract it 
from the ordinary Lorentz force. This is possible due to the different 
dependence on q and because of the appearance of dr/dr. For zero electric 
and magnetic fields on the surface of the earth we get 

1 
g (B.38) 

a = 1 +kllqll 2 ~xp 

where g is the gravitational acceleration on the surface of the earth. Taking 
two samples with different charges 

[[q, ll2 = r,, i = 1 , 2  

one can measure the difference in accelerations 

A r  
Aa = al - a 2 ~ - 7  Apg (B.39) 

where 

Thus, we get 

Ar= IIq2]l 2 -  Ilq,[I 2 

= --if- Ar ( B . 4 0 )  

This means a linear dependence. Thus, measuring differences in the acceler- 
ation of pairs of samples, we can test the predictions of the theory. For 
example, we can try to reinterpret in a different way the results of Fishbach 
et al. (see ref. 54) on a reanalysis of the E6tvBs experiment. 

Let us reconsider equation (14.28a) in a static field. Thus, 

d s 2  = g44(dx4)  2 - d12 = g a 4 ( d x 4 )  2 - Trf dx T dx f, i, f =  1, 2, 3 

and g44, ]/ag do not depend on x 4. One gets similarly to equations (B.7a) 
and (B.8) 

E 2 - p g P  g m 2 1 S \ p  -7-1  =rn~ (B.41) 
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where 
dx  4 

E = ff/0(P)g44 ds 

d X  4 

: ff/0(P)g44 [ g 4 4 ( d x 4 ) 2  _ d1211/2 
/~0(p ) (g44) 1/2 

(1 - V2)  1/2  

dl dl 
v -  

d r  - (g44) ~/2 dx  4 

p~ = r~o(p ) u~ = r~o(p ) y~r)u r 

p ~ p E =  m ~ ( p ) y ( r f ) u r u  f 

(B.42) 

(B.43) 

(B.44) 

(B.45) 
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