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Nonsymmetric Kaluza—Klein and Jordan—Thiry
Theory in a General Non-Abelian Case
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This paper is devoted to an (n+4)-dimensional unification of NGT (nonsym-
metric gravitation theory) and Yang-Mills theory in a Jordan-Thiry manner.
We find “interference effects” between gravitational and Yang-Mills fields which
appear to be due to the skew-symmetric part of the metric on the (n+4)-
dimensional manifold (nonsymmetrically metrized principal fiber bundle). Our
unification, called the nonsymmetric-non-Abelian Jordan-Thiry theory, becomes
classical if the skew-symmetric part of the metric is zero. We find the Yang-Mills
field Lagrangian up to the second order of approximation in h,, =g,,~7,,.
We also deal with the Lagrangian for the scalar field (connected to the “gravita-
tional constant”). We consider the spin content of the theory and a relationship
between the cosmological constant and the coupling constant between the skewon
field and the gauge field in the first order of approximation. We show how to
derive a dielectric mode! of a confinement from “interference effects” in these
theories. We underline some similarities between the nonsymmetric Jordan-Thiry
Lagrangian in the flat space limit and the soliton bag model Lagrangian.

INTRODUCTION

The aim of this paper is to construct the Kaluza-Klein (Jordan-Thiry)
analogue with Einstein’s geometry on a principal fiber bundle in the general
non-Abelian case (for classical results see refs. 1-91). In other words, it
will be an (n +4)-dimensional unification of NGT (nonsymmetric gravita-
tion theory), gauge {Yang-Mills) fields, and scalar forces connected to the
gravitational constant (as in the scalar-tensor theories of gravitation; see
ref. 50). Our unification uses a nonsymmetric metrization of fiber bundles.
We introduce a scalar field p in a Jordan-Thiry manner (see ref. 21). We
get the following ‘‘interference effects” between Yang-Mills and gravita-
tional fields:

1. A new term in the Yang-Mills Lagrangian,
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2. A change in the classical part of the Yang-Mills Lagrangian,
replacing h,, by

lab = hab + f“kab

3. The existence of a Yang-Mills field polarization of the vacuum M*,4
with an interpretation as a torsion in higher dimensions.

4. An additional term in the Kerner-Wong equation (equation of
motion for a test pasticle in the gravitational and Yang-Mills fields)

b
%(-3;;) (lhag™® — lg“F )L g "
where m, is the rest mass of a test particle and g is its color (isotopic) charge.

5. A new energy-momentum tensor 1%55*° with zero trace.

6. Sources for Yang-Mills fields, the current j*°.

All of these effects vanish if the metric on P (fiber bundle becomes
symmetric. In this case we get the classical results.

We get in the Moffat-Ricci curvature scalar, on an (n +4)-dimensional
manifold P, a Lagrangian of the scalar field ¥,

Local(¥) = (Mg + n’gt* g, g0 T
where

m=(l[d”]l[dc]—3n(n—~1)), n=dim G

This field is connected to the gravitational constant by K =e """,

where K is the gravitational constant. The trace of the energy-momentum
tensor for this field is not zero. This suggests that ¥ is massive and has
Yukawa-type behavior. This indicates that ¥ has a short range and the
theory does not violate the weak equivalence principle. Furthermore, the
gravitational “constant” K does not change at long distances. This statement
also supports the masslike term in the equation for V¥,

—8(n+2)me "TIY( Ly, —2®) = -8(n+2)mwe "V Lyp — eV A(p)
where
—1
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Lym =

is the Lagrangian for the Yang-Mills field; ® has an interpretation as a
cosmological term in our theory

2(n+2)¥
" Alp) ~ (£2m+2%) const

D(u)= Tom

or ~(eX"PY) (for large )
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which now depends on the scalar field ¥. We also get a scalar-force term
in the equation of motion for a charged test particle moving in the gravita-
tional and Yang-Mills fields:

2
_.__gjrlllg g"(aﬁ) eZ‘I’\I,’ﬁ

where ||q||>= ~h.,q°q" is the length squared of the color (isotopic) charge
of a test particle. This force is of short range. If the skew-symmetric part
of the metric y,5 becomes zero, most of these effects vanish. However, the
propagation of the scalar field is possible only if n=2.

Let us make some remarks on differences between the nonsymmetric
non-Abelian Kaluza-Klein and Jordan-Thiry theories. In the nonsymmetric
non-Abelian Kaluza-Klein theory there is an Ansatz p =1 (v, = I, = hop +
ko). This condition seems to be quite arbitrary and because of this we
consider a more general case called Jordan-Thiry theory where vy, =
p*(ha + pk,,) and p = p(x) is a dynamical field.

Moreover, the detailed examination of geodetic equations in both cases
reveals the following. If p =const, the geodetic equation possesses an
integral of motion

@ 1.8
y(hor(u(f)),hor(u(7)))=ga351£— éc—=const (%)

dr dr
which allows us to maintain an initial normalization of the four-velocity of
a test particle. In the case with vy,,(x)=p’l, (i.e., p #const) this is not
possible in general (see Section 4.12). For this the condition vy,, = I, does
not seem to be an Ansatz in the theory, but rather a conclusion from (**).

This paper is organized as follows. In Section 1 we give some elements
of geometry used in the paper. Section 2 is devoted to a nonsymmetric
tensor on a Lie group. In Section 3 we present a nonsymmetric metrization
of the fiber bundie. In Section 4 we formulate the nonsymmetric Jordan-
Thiry theory in a general non-Abelian case. We calculate connections w™y
and W5 on the (n+4)-dimensional manifold which are analogous to the
connections &% and W, from NGT. In Section 5 we write the geodetic
equation on P (nonsymmetrically metrized fiber bundle with scalar field p)
and we find new corrections to the equation of motion for a test particle.
In Section 6 we calculate the 2-form of torsion for the connection w®5 and
the 2-form of curvature for w”z. We calculate also the curvature tensor for
w?p and W*,. After this we find the Moffat-Ricci curvature scalar for
W*5 which plays the role of the Lagrangian in our theory. In Section 7 we
deal with a connection &%, on a typical fiber and with the cosmological
constant in our theory. In Section 8 we perform a conformal transformation
for the g,, tensor and we transform the scalar field p to ¥. Section 9 is
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devoted to the gauge invariance of the Lagrangian. In Section 10 we define
the Palatini variational principle for R(W) and we get equations for the
gravitational, Yang-Mills, and scalar fields. We interpret our results.

Section 11 is devoted to some special cases in our theory. In Section
12 we deal with the linearization procedure in our theory. Section 13 deals
with geodetic equations in a linear approximation. In Section 14 we examine
some general properties of geodesics in our theory and the geodetic deviation
equation. Section 15 gives some conclusions and prospects.

In Appendix A we consider a more general case for

Yab:Pab(p)=Pab(x: g)
pep, xeUcE, ge G

where P,, is a dynamical field depending on a space-time point (x€ E)
and right-invariant with respect to the (right) action of the group G. The
detailed examination of geodetic equations on P leads to the conclusion
that the tensor P has the shape

Po(x, 8)=p*(x)p(g) or P=p?

where I, is right-invariant with respect to the (right) action of the group
G (i.e,, it has a factorization property) and p = p(x) is a scalar field on E
(i.e., P P,,0°® 6% 1=1,0°® 6°). Moreover, in order to get a proper limit
for the Yang-Mills Lagrangian, i.e., for u =0, we suppose that I ,,) = h(ap
(the bi-invariant tensor on G).

Moreover, we can get right-invariance of I, demanding the gauge
invariance of the curvature scalar built from a connection w”; (ie., we
come to the nonsymmetric metrization of the fiber bundle P considered in
Section 3.

We can summarize our conclusions in two theorems.

Theorem I:

1. Let P be a principal fiber bundle over a space-time E with a structural
group G (semisimple and compact), a projection a, and let us define on P
a connection w.

2. Let &% be a linear connection on a fiber bundle of frames over E
compatible in the Einstein-Kaufman sense with the nonsymmetric (real)
tensor g, defined on E.

3. Let P, be a family of nonsymmetric right-invariant tensor fields
defined on G and parametrized by a point on E, i.e., P, =P,(x, g),
xeUCE, geG (P=P,,0°®06").

4, Let y=v450”"® 0° be a tensor field on P (a nonsymmetric metric)
and let w®; be a linear connection on a fiber bundle of frames over P
compatible in the Einstein-Kaufman sense with this tensor (i.e., we have
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to do with & = w”zx®,). The tensor ¥y in a lift horizontal basis has the form
_(8sp] O )
ne (s

Y= Ym0 ®0% = 1 g® P 0° ® 0" = n*g ® P
y= ‘}’[AB]QA AGP = THG® Prop0° A 0°=m*g

ie.,

®
o

(see Section 3 for some details concerning our notations).

5. Let geodetic equations (for a geodetic I") with respect to the con-
nection @™y possess n first integrals of motion v® = const being Ad-type
quantities and a linear function of

2 _dx’
dt’

u® = (ver(u))®

(where u is a tangent vector field to geodesic I'), i.e., there is a bi-invariant
invertible matrix »°, such that

Ua — xabub
or there is a bi-invariant invertible linear transformation field on P such that
% :Ver(Tan,(P)) - Ver(Tan,(P))

%, ° w, = w, ° %,, and v, = %,(ver(u,)), pe UX G, U< E in a local trivializ-
ation, and v, = const for I' = P. Then, there exists a scalar field p = p(x) and
a nonsymmetric tensor I, on G such that:

1. P, =p>l,, (a factorization property), (P = p*I).

2. 1, is right-invariant with respect to the right action of the group G
on G (see Section 2 for details and definitions).

3. vy and @ are right-invariant with respect to the right action of the
group Gon P,i.e., ¢'(g)y=vand <£*(g)¢5 = &, where ¢ is an action
of the group G on the bundle of frames over (P, ¥) lifted from the
gauge bundle.

Theorem I1. Let conditions 1-5 be satisfied and in addition:
6. Let geodetic equations for a curve I with respect to w™y possess a
first integral of motion

dx® dx”

£(aB) "J 71? = const

onT, i.e., y(hor(u), hor(u)) = const, where u is tangent to I'c P. Then the
scalar field p(x) = const, i.e., P,, =l , (P =1) (up to a constant factor which
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can be absorbed in the definition of I,,) [hor is understood in the sense of
o on P (a gauge bundle)]. For [, right-invariant and demanding a proper
limit for the Yang-Mills Lagrangian in the case u =0, we easily get that

lab:hab+ﬂkab (l=h+/~l'k)

where h,, is a bi-invariant tensor on G and k,, is a skew-symmetric
right-invariant tensor on the group G defined in Section 2.

Briefly, if conditions 1-6 are satisfied, we get the nonsymmetric non-
Abelian Kaluza-Klein theory (N°AK’T). If conditions 1-5 are satisfied, we
get the nonsymmetric non-Abelain Jordan-Thiry theory (N°AJT?).

In this way the assumption of the factorization property of P, and
the constancy of a field p do not seem to be arbitrary conditions, but rather
the conclusions of Theorems I and Il. The proofs of Theorems I and II
can be found in Appendix A. Both conclusions justify our interest in the
theory presented in this paper from the physical and mathematical points
of view.

Let us note that our construction with a right-invariant I, (I) tensor
leads to a notion which can be called the Einstein-Kaufman G-structure
(right G-structure).

In Appendix B we consider some problems connected to test particle
motion on a nonsymmetrically metrized bundle P.

1. ELEMENTS OF GEOMETRY

In this section we introduce the notations and define the geometric
quantities used in this paper. We use a smooth principal fiber bundle P,
which includes in its definition the following list of differentiable manifolds
and smooth maps:

A total (bundle) space P.

A base space E; in our case it is a space-time.

A projection 7: P> E.

A map ®: P x G- P defining the action of G on P; if a, be G and
£ € G is the unit element, then ®(a)o ®(b)=>(ba) and ®(¢)=id and
®(a)p=D(p, a)=R,p=pa, moreover meP(a)=7. o is a 1-form of a
connection on P with values in the Lie algebra of the group G. Let ®'(a)
be the tangent map to ®(a), whereas ®*(a) is contragradient to ®(a) at
the point a. The form o is a form of Ad-type, i.e.,

d*(a)w =Ad,_ o (1.1)

where Ad, € GL(g) is the tangent map to the internal automorphism of the
group G (i.e., it is an adjoint representation of a group G)

ad,(b)=aba™’
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Due to the form w, we can introduce the distribution field of linear elements
H,, re P, where H,< T,(P) is a subspace of the space tangent to P at a
point r and

veH, & w(v)=0 (1.2)
We have
T.(P)=V,®H, (1.3)

where H, is called a subspace of horizontal vectors and V, of vertical vectors.
For vertical vectors v € V, we have #'(v) =0. This means that v is tangent
to fibers. Let us define

v =hor(v)+ver(v), bhor(v)e H,, ver(v)e 'V, (1.4)

It is well known that the distribution H, is equivalent to a choice of the
connection w. We can reproduce the connection form « demanding that
win,: H,» T, (E) is a vector space isomorphism (dim H, =dim E =4),
Hy(, oy =d'(g)H,, [T,(E) is a tangent space to space-time E at a point
7r(r)]. We use the operation “hor” for forms, i.e.,

(hor B)(X, Y)=B(hor X, hor Y) (1.5)
where X, Y e T,(P). The 2-form of curvature of the connection w is
Q =hor dow (1.6)
It is also a form of Ad-type like w. {) obeys the structural Cartan equation
Q=do+io, o] (1.7)
where
[w, 0](X,Y)=[e(X), o(Y)]
Bianchi’s identity for w is
hor dQ1=0 (1.8)

For the principal fiber bundle we use the following convenient scheme
(Figure 1A). The map e: U—> P, Uc E (U open), so that ec w=id, is
called a local section. From the physical point of view it means choosing
the gauge. Thus,
e*w=e*(w“Xa)=A”;,0—”Xa=A (
_ 1.9)
e*Q) = e*(Q°X,) =3F5,0" 70X,

Further, we introduce the notation

Q*=3H" 0" r@" (1.10)

"
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Fig. 1A. The principal fiber bundle P.

where * = 7*(8*) and
Fi,=9,A% —d,A%, + CgcA,’iAi

X, (a=1,2,...dim G = n) are generators of the Lie algebra g of the group
G and

[Xa, Xb] = Ccach

Analogously we can introduce a second local section f: U~ P, and
corresponding to it A=f*w, F=f*Q. For every xe Uc E there is an
element g(x)e G such that f(x)=e(x)g(x)= Ry e(x)=P(e(x), g(x)).
Due to equation (1.1) and an analogous formula for (), one gets A=
Ad,A+g ' dgand F = Ad,~ F. These formulas give ttie geometrical mean-
ing of gauge transformation.

In this paper we use also a linear connection on manifolds P and E
using the formalism of differential forms. So the basic quantity is a 1-form
of a connection w”5. This is an R-valued (coefficient) connection form and
it is referred to the principal fiber bundle of frames with P or E as a base.
The 2-form of curvature is

QAB—:d(UAB‘l"(I)AC/\wCB (1.11)
and the 2-form of torsion
0" =Do" (1.12)

where 87 are basic forms, and D means the exterior covariant derivative
with respect to ” 5. The following relations define the interrelation between
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our symbols and generally used ones:
wAB — FABCHC
=3Q"5c0% 7 6€ (1.13)
Q%5 =3R%5cp0 n 0"

Where I'?p- are coefficients of the connection (they do not have to be
symmetric in indices B and C), R*cp is a tensor of curvature, and Q” ¢
is a tensor of torsion. Covariant exterior differentiation with respect to w”5
is given by the formula

DE*=dE%+w”-AE¢
(1.14)
DEAB = dzAB + (I)AC A ECB - wCB A EAC
The forms of curvature Q*p and torsion @ obey Bianchi identities
DQAB = O
(1.15)
D@A = QAB A GB

In this paper we use also Einstein’s + and — differentiations for the
nonsymmetric metric tensor gap:

Dgyp.=Dgap— 8ADQDBC9C (1.16)

where D is the convariant exterior derivative with respect to o, and Q"¢
is the tensor of torsion for w™g. In a homolonomic system of coordinates
we casily get

Dgy.p-= gA+Bf;C0C = [gAB,C - gDBFDAC _gADFDCB]GC (1.17)

All quantities introduced in this section and their precise definitions can
be found in refs. 51 and 59-61.

Finally, let us connect a general formalism of the principal fiber bundle
with a formalism of a linear connection on E or P.

Let M be an m-dimensional pseudo-Riemannian manifold with metric
g of arbitrary signature. Let T(M) be the tangent bundle and O(M, g) the
principal fiber bundle of frames (orthonormal frames) over M. The structure
group of O(M, g) is the group GI(m,R) or the subgroup of GI(m,R),
O(m —p, p), which leaves the metric invariant. Let IT be the projection of
O(M, g) onto M. Let X be a tangent vector at a point x in O(M, g). The
canonical or soldermg form 6 is an R™-valued form on O(M, g) whose
Ath component 6* at x of X is the Ath component of IT'(X) in the frame
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x. The connection form & = w*;X %, is a 1-form on O(M, g) which takes
its values in the Lie algebra gl(m,R) of GI(m,R) or in o(m—p, p) of
O(m — p, p) satisfies the structure equations

dé +i[é, 31=0 =Hor dé (1.18)
where Hor is understood in the sense of & and O =04,X2, is a gl(m, R)-
(o(m —p, p))-valued 2-form of the curvature. We can write equation (1.18)

using R*™-valued forms and commutation relations of the Lie algebra
gl(m,R)(o(m, m—p)),

Q% =do’ s+ 6% A6y (1.19)

Taking any local section of O(M, g)e, one can get forms of coefficients of
the connection, torsion, curvature, and basic forms

e*OSAB = wAB

e*(14p =04
e*64 =04
e** =0

The forms of the right-hand side of equations (1.20) are the forms
defined in equations (1.11), (1.12), (1.13), (1.14), etc. We call this formalism
a linear (affine, metric, Riemannian, Einstein) connection on M.

(1.20)

p & W\ GL(n+4R)
N
n, QE
PI//

P % s (7 &
T Y i

! e
E GL( n,R)

w
N\ GL{4R)

JI"

Fig. 1B. Principal fiber bundles P, P/, P”, and P”; P" is a principal fiber bundle of frames
over G.
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In our theory it is necessary to consider at least four principal fiber
bundles: a principal fiber bundle P over E with a structural group G (a
gauge group), connection w, and horizontality operator **hor’; a principal
fiber bundle P’ of frames over (E, g) with the connection ®”3X P =w a
structural group GI(4, R)(O(1, 3)), and an operator of horizontality hor; a
principal fiber bundle P” of frames over (P, y) (a metrized fiber bundle P)
with a structural group GI(4+n, R)(O(n+3, 1)), a connection 65X ® 4 = &,
and an operator of horizontality hor; and a principal fiber bundle of frames
P" over G with a projection I1", operator of horizontality (hor)”, a connec-
tion &, and the structural group Gl(n, R). Moreover, in order to simplify
considerations, use the formalism of linear connection coefficients on mani-
folds (E, g), (P, v) and a principal fiber bundle formalism for P (a principal
fiber bundle over E with the structural group G a gauge group). This will
make the formalism more natural and readable (see Figure 1B).

2. THE NONSYMMETRIC TENSOR ON A LIE GROUP

Let G be a Lie group and let us define on G a tensor field h = h,v° ® v°

and a field of a 2-form k = k,,v° A v°, where
dv® =-3C% 0P A 0° (2.1)
v® is a usual left-invariant frame on G, and C*,. are structure constants.

Let X, be generators of a Lie algebra G—g; X, are left-invariant vector
fields on G and they are dual to the forms »“

[Xtu Xb] = Ccach (22)
Using h and k, we construct a tensor field on G,
lip=hap+ ,u'kab (2-3)

where u is a real number. Let us recall that the left-invariant vector fields
on G are infinitesimal transformations of a right action of G on G. The
symbol Ad;(g) means a matrix of the adjoint representation of the group
G. We denote it Adg. R means a right action of the group G on G; L, a
left action [R(g), L(g), g€ G].

We are looking for the following h and k:

R*(g)h=h (2.4)

R*¥(g)k=k (2.5)
or in terms of the tensor I,

R*(g)l=1 (2.6)

The condition (2.5) can be rewritten
(R*(g))kgl(Xgn Yo ) = ky o (X, 8, Ye,8') = ke (Xe,s Yy,) (2.5a)
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where g, g, € G. Moreover, X, Y are left-invariant vector fields on G. Thus,
X,=X,=X, Y,=Y,=Y, and

(R*(g))kg, (X, Y) =ky o (Xg', Yg') = ko (X, Y) (2.5b)
where £ € G is a unit element of G.

In order to find h and k satisfying (2.4) and (2.5), we define a linear
connection on G such that

c5"b = —C“bcvc (2.7)

Let the covariant differentiatjon with respect to @“, be V. and an
exterior covariant differentiation D. It is easy to see thit this connection is
flat,

Q% =dd% + 6% A 6% =0 (2.8)
with nonzero torsion
0% = Dv® = dv® + &% A v° =3C% 0" A v° (2.8a)
and with a tensor of torsion
éabc =C% (2.9)

This connection is also metric. This means that the Killing-Cartan
tensor on the group G is absolutely parallel with respect to @“,. A parallel
transport according to this connection is a right action of the group G
on G.

One can easily find that (2.4)-(2.6) are equivalent to the condition

eclab =0 (2.10)

Thus, in order to find h and k, we should solve (2.10) on the group G.
Let us prove that the system (2.10) is self-consistent.

In order to do this, let us consider the commutator of the covariant
derivatives

2e[rek]lcd = R®idpa + Rbado+ Q70 ¥ L (2.11)
Moreover, &, is flat and we get
ze[rek]lcd = QAprkeplc = Cprkﬁplcd

A

¥,1.=0

(2.12)

which proves the consistency of (2.10).
This result we can get using the equivalent form of (2.10),

Xflcd + l"dcgf'i" ICHCSfZ 0 (213)
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It is easy to see that a bi-invariant tensor h on G satisfies (2.13) iden-
tically (for example, a Killing-Cartan tensor).
Thus, one gets for a tensor k,,

Vokap = Xokop + Ky C i+ knC e = (2.14)

It is easy to see that if k,, satisfies (2.14), b- k,, satisfies this condition
as well for b = const.

In the case of an Abelian group, k is bi-invariant on G.

The interesting case in our theory is a semisimple group G. In this case
k., cannot be bi-invariant. The only bi-invariant 2-form on the semisimple
Lie group G is a zero form. Moreover, equation (2.14) has always a solution
on a semisimple group and k is right-invariant. Moreover, we suppose that
the symmetric part of [ is bi-invariant (left- and right-invariant) and k only
right-invariant.

We can also define k in a special way,

k(A, B)=h([A, B], V), A=A"X,, B=B‘X, (2.15)
where
V.V,i=0 (2.16)
V=V,®v? is a covector field on G (it is right-invariant) and h is a
Killing-Cartan tensor on G.

In order to become more familiar with the notion of a tensor k, we
find it for the group SO(3). In this case we have left-invariant vector fields

d 9 1 d
1 = COS al/—é—smdz(cot ——)

8(11 sin 0 3¢
e, =sin d; +cos ¢z<cot 653—51; P 5%) (2.17)
-9
e3—aw
such that
[eq, es]= —&apeec; a,bc=1,2,3 (2.18)

0, ¢, ¢ are Euler angles—the usual parametrization of SO(3),
O=0=mn
O=y=27 (2.19)
0=¢p=27
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and gy, =1 and &, is a Levi-Civita symbol (see ref. 62). In this case one
can easily integrate (2.16) and find
Vi(6, ¢, ) = a(cos ¢ cos ¢ —cos 0 sin ¢ sin )
+ b sin ¢ sin 6 — c(sin ¢ cos ¢ +cos 0 cos ¢ sin )
V,(6, &, ¥) = a(sin ¢ cos ¢ +cos 8 cos ¢ sin ¢)
— b cos ¢ sin 8+ c(cos 8 cos ¢ cos ¥ —sin ¢ sin )
Vi(6, ¢, ) = a sin ¢ sin 64 b cos 0+ ¢ sin ¢ sin 8, a, b, c = const

(2.20)

In the simpler case a =c =0, b#0, one gets

V.= b sin 0 sin ¢

V,=—bsin 8 cos ¢ (2.20a)
Vy=b cos 6, b = const
For
kab = Eachc (221)
we get
—[a(sin ¢ cos ¢
(asin ¢ sin 6 +b cos eos Gcos.a,//sm ¢)
0 . . —b cos ¢y sin 8
+c sin ¢ sin 8)
+c(cos 0 cos ¢ cos ¢
—sin ¢ sin )]
[a{cos ¢ cos ¢
. . —cos 8 sin ¢ sin ¥)
ko= —(a 51r.x¢suj10+bcos(9 0 +bsin  sin 6
+csin ¢ sin 0) .
—c(sin ¢ cos ¢
+cos 8 cos ¢ sin )]
a{sin ¢ cos ¢ ~[a(cos ¢ cos ¢
+cos 9 cos ¢ sin ¢) —cos 0 sin ¢ sin )
—b cos ¢rsin 6 +bsin ¢ sin 6 0
+c(cos 8 cos ¢ cos ¥ —c(sin ¢ cos ¢
—sin ¢ sin ¢) +cos 8 cos ¢ sin )]
(2.22)
In a simpler case for a=c=0, b # 0 one gets
0, b cos 6, —bsin 0 cos ¢
ko = —b cos 8, 0, b sin 6 cos ¢ (2.22a)

b sin 6 cos iy, —b sin 0 sin 6 sin ¢, 0
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Thus, if we choose for k a Killing-Cartan tensor on SO(3) [this is a unique
bi-invariant tensor on SO(3} modulo constant factor]

hab = —zaab (223)
we easily get

—p[a(sin ¢ cos &

plasin ¢ sin @ +cos 8 cos ¢ sin ¢)
-2 +B cos @ —-B cos ¢ sin 0
+v sin ¢ sin 8) +vy(cos 6 cos ¢ cos ¥
~sin ¢ sin ¢)]

ula(cos ¢ cos ¢
~cos 6 sin ¢ sin )
Ly = -2 +8 sin ¢ sin 6
~v(sin ¢ cos ¢
+cos 0 cos ¢ sin )]

wlalsin ¢ cos ¢ —ulal{cos ¢ cos &
+cos 6 cos ¢ sin ¢) —cos 6 sin ¢ sin )
—B cos ¢ sin +8 sin ¢ sin -2
+vy(cos 8 cos ¢ cos ¢ —y(sin ¢ cos ¢
—sin ¢ sin )] +cos 8 cos ¢ sin )]

(2.24)

where u = n(a’*+b*+ >3, n’=1,a=a/u, B=b/u, y=c/u. Inasimpler
case, for a=c =0, b#0, one gets (absorbing 8 by u):

-2, i cos 6, w sin 6 cos ¢\
Iy,= —u €os 8, -2, pusinfcosy| (2.24a)
—u sin 0 cos ¢, —p sin 6 cos i, -2

For an inverse tensor /*° such that
1%, = 1", = 8°, (2.25)
we have

Aab
A

lab

(2.26)
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where A=det(l,,) = —2(4+ u>), A* is a cofactor matrix, and
A" =4+ u?sin® @ sin®
A= —(2u cos 0+ u”sin® 6 sin ¢ cos )
AP = (u? cos 8 sin 8 sin ¢ — 2 sin @ cos ¥)
A =(2u cos 8 — u?*sin’ 6 sin i cos )
A* = (4+ u”sin® 6 cos’ ) (2.27)
AP =—(2u sin 6 sin ¢+ u? cos 6 sin 8 cos ¢)
A*'= (u? cos @ sin 0 sin ¢ +2u sin 8 cos )
A*?* = (2 sin 8 sin ¢ — u” cos 8 sin 8 cos ¥)
AP = (4+ u? cos® 6)

In the case of SO(3), equation (2.22) is the most general tensor satisfying
(2.5) except for a constant factor in front. Thus, this tensor is unique for
SO(3) modulo a constant factor.

In the case of any SO(n) one can find k and [ similarly using Euler
angle parametrization and so for classical groups SU(n), Sp(2n), G,, F,,
E,, E,, E;s. In the case of solvable and nilpotent groups we can also try to
find bi-invariant skew-symmetric tensors.

Finally, we suggest a general form of the tensor k,, on a semisimple
group G, i.e., such that equation (2.4) is satisfied. The solutions of equations
(2.10) and (2.14) are as follows:

L (€)= Lp(£) (e ) ()Y
and
kap(€€) = kap(£)(e )5 (e )}
One writes
ki (8)=furU”a(8)U"4(g), g€G (2.28)

where U(g) = Ads(g) is an adjoint representation of the group G. It is easy
to see that for (2.28) we have

eckab =0 (2.29)
Jab = —fap = const (2.30)

and it is defined in the representation space of the adjoint representation
of the group G. In the case of the group SO(3) one has

f;zb = 8abcf;‘ (2.31)
kab = Sabc‘/c (2313)
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and
V. =f.U(8) (2.32)

If we choose f.=(0,0, b), we get equation (2.20a). Moreover, it is always
possible because an orthogonal [ SO(3)] transformation can transform any
vector f into (0, 0, =| f ), where | f| is the length of £ The semisimple Lie
group G can be considered a Riemannian manifold equipped with a
bi-invariant tensor h (a Killing-Cartan tensor) and a connection induced
by this tensor. This Riemannian manifold has a constant curvature. Such
a manifold has a maximal group of isometries H of dimension sn(n+1),
n=dim G (see ref. 59) (the isometry is here understood in the sense of the
metric measured along geodetic lines in Riemannian geometry induced by
a Killing-~Cartan tensor). This group is a Lie group. It is easy to see that
for G=80(3) we have H =SO(3)®S0O(3) and dim SO(3)®SO(3)=6,
dim SO(3)=3. The group SO(3) leaves the Killing-Cartan tensor h,,
invariant,

By A” A" = Ry (2.33)

where Ac SO(3).

Moreover, f,, has exactly three arbitrary parameters and solutions of
equation (2.14) have the same freedom in arbitrary constants. This suggests
that the tensor (2.28) could be in some sense unique modulo an isometry
on SO(3) and a constant factor b. In this case the classification of k,, tensors
on SO(3) could be reduced to the classification of skew-symmetric tensors
fa» With respect to the action of the group SO(3). In general the situation
is more complex, because SO(n), n = dim G, does not leave the commutator
(Lie bracket) invariant.

Let us suppose that G is compact. In this case we should find all
inequivalent f,, tensors with respect to an orthogonal transformation A€
8SO(n). It means we should transform f,, to a canonical form via an
orthogonal matrix, i.e.,

(fan)=f>f=(far)=ATfA=AT'fA (2.34)

For skew-symmetric matrices we have the following canonical forms, the
so-called block-diagonal matrices:

f= . (2.35)
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or for n=2m+1

0 ¢
_51 0 O
f= " &0 (2.36)
O & 0 0
i 0 0 0

where ¢!, £,..., & are real numbers. In order to find them, we should
solve a secular equation for f,

det(ul, —f)=p"+a,(f)p" 2+ a)(f)p" 2+
[L,= (6})1‘,]‘:1,2..."]

The coefficients a,, a,, ... are invariant with respect to an action of the
group O(n) [SO(n)] and they are functions of ¢',..., £™ Thus, in the case
of a compact semisimple Lie group, the skew-symmetric tensor k., on G
is defined as

(2.37)

kap(8) = b+ fary Ua() U (8) (2.38)
where b is a constant real factor and (f,) = f is given by
[ 0 1 l
-1 0
0 £ ©
f=A" ¢ 0 A (239)
0 g_—mvl
O __gm—l 0
for n=2m, or
[0 1 ]
-1 0 1 o
0 ¢
_ gl
f=A" €0 A (2.39a)
0 g:mfl
O &m0
A 0]

for n=2m+1.
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Supposing that h,, = diag(A;, Az, ..., A,), Wwhere n=2morn=2m+1,
one gets

[ A 51 b
1
A
4 2 i o
Ay €
—& A
lp(e)=A" A
@) .
/\2m41 é:m
| _gm AZm_
=ATI(e)A (2.39%)
for n=2m or
Y T
1
- A
& A i O
Ay €
_fz )\4
1, =AT . A
»(€) o
)‘2m—1 gm
—ém /\Zm
| )‘2:n+1J
=AT[(e)A (2.39ax)
for n=2m+1.
Moreover, if G is compact, we have A; =X, i=1,2,...,n, and A <0.

This is because any bi-invariant symmetric tensor is proportional to the
Killing-Cartan tensor. In particular, the Tr tensor commonly used in Yang-
Muilis theory is proportional to h,,. Thus, hy, = A(Tr) . = A4, A <O0. [For
a particular normalization of generators Tr({X,, X,}) =28,,.] Let us remark
that, in general, if k,,(¢) and h,, commute (for now I do not suppose that
G is compact), we have L,(e)=(A"'[(£)A).,, where Ae Gl(n,R) and

lab(g) = Uﬂ’a (g) Ub'b(g)(/‘—1 i(E)A)a’b'
One can say, of course, that k,;, tensors are defined with more arbitriness

than bi-invariant, symmetric tensors. This is because k is only right-invariant.
Let us notice that

Jab = kap(€) (2.40)
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(& is a unit element of G) and

Rykar(8) = kap(88") = kea(g) U a(g) U%(g") (2.41)

where g, g'e G

In the case of G=S0O(3), k,, is unique up to an isometry of the
Riemannian manifold with the bi-invariant tensor as a metric tensor and a
constant factor. This suggests that the k,, tensor given in the form (2.15)-
(2.16) and (2.31)-(2.32) is an analogue of the Killing-Cartan tensor for k,,
(skew-symmetric). Moreover, the vector f can be transformed by an
orthogonal [ O(n)] transformation into

0,0,...,£]fID (2.42)
n times
Thus, one gets
kap(8)=b- CinfoUZ(g) (2.43)
where b is a constant factor and
(f&)=1°=(0,0,...,1) (2.44)
[

n times
Thus, we can write k in a more compact form
k(A, B)(g)=b" h([A, B], Ad,f°) (2.45)

where A=A°X,, B=B°X,.
Using the bi-invariancy of the Killing-Cartan tensor, one can write

k(A, B)(g)=b- h(Ad,[A, B, /) (2.45a)
Moreover, if there is § € G such that §°=g, we get
k(A, B)(§)=b- h(Ads1[A, B], Ad;f°) (2.46)
We find the interpretation of the factor b for K given by formulas (2.45)-
(2.46). One gets
kabkab = haa,hbb’kabka’b’ = bleAdgf"llz =b? (2.47)
Thus, we have
b = £(kapk™)"? (2.48)

Finally, let us note that we can repeat the considerations changing right
(left)-invariant to left (right)-invariant everywhere. In this case we can
consider a left-invariant 2-form k and a left-invariant nonsymmetric tensor
on a Lie group G.
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3. THE NONSYMMETRIC METRIZATION OF THE BUNDLE P

Let us introduce the principal fiber bundle P over the space-time E
with the structural group G and with the projection . Let us suppose that
(E, g) is a manifold with a nonsymmetric metric tensor of the signature

(_’ —3 _’ +)’

8ur = 8wy T 8 (3.1)
Let us introduce a natural frame of P,
0% =(7%(0%), 8° = Ao®), A = const (3.2)

It is convenient to introduce the following notations. Capital Latin indices
A, B, Crunoverl, 2, 3,...,n+4, n=dim G. Lower case Greek indices
are a, B, v, 6 =1, 2, 3, 4 and lower case Latin indices are a, b, ¢, d =5,
6,...,n+4. The bar atop 8° and over other quantities indicates that these
quantities are defined on E.

It is easy to see that the existence of the nonsymmetric metric on E is
equivalent to introducing two independent geometrical quantities on E,

§=8,0°Q0° =g.,s0"®8° (3.3)
g = 8aph A 0° = grop10% £ 67 (3.4)
i.e., the symmetric metric tensor £ on E and 2-form g. On the group G we

can introduce a bi-invariant symmetric tensor called the Killing-Cartan
tensor,

h(A, B) =Tr(Ady ° Ad}) (3.5)

where Ad,(C)=[A, C] (it is tangent to Ad, i.e., it is an “infinitesimal” Ad
transformation). It is easy to see that
h(A, B)=h,A*- B (3.6)
where
hab = Ccadcdbc; hab = hbaa A = AaXas B = BaXa

This tensor is distinguished by the group structure, but there are of course
other bi-invariant tensors on G. Normally it is supposed that G is semi-
simple. It means that det(h,,)# 0. In this construction we use I )= Ay
(the bi-invariant tensor on G) in order to get a proper limit (i.e., the
non-Abelian Kaluza-Klein theory) for u =0.

For a natural 2-form k on G, or a natural skew-symmetric right-invariant

tensor, we choose k described in Section 2; k is zero for U(1). Let us turn
to the nonsymmetric natural metrization of P. Let us suppose that

X, Y)=g(7'X, ' Y)+ A?p’h(w(X), o(Y)) (3.7)
y(X, Y)=g(#'X, 7'Y) +ur?p’k(0(X), o(Y)) (3.8)
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i =const and is dimensionless, X, Y ¢ Tan(P), and p = p(x) is a scalar
field on E. The first formula (2.9) was introduced by Trautman (in the
case with p = 1) for the symmetric natural metrization of P and it was used
to construct the Kaluza-Klein theory for U(1) and non-Abelian generaliz-
ations of this theory. It is easy to see that

V=a D p h,0°® 0° (3.9)
y=m*g+pp’kap6® 1 6° (3.10)
or
8ap1| O
’Y(AB)=< 0 chab> (3.11)
gaﬂ 0
- 3.12
nn= () 12
For

YaB = Yamy T Yran]
one easily gets
&o 0
‘YAB=< OB ) > (3.13)
P lap

where L, = h,, + k,,. Tensor y,p has this simple form in the natural frame
on P, #°. This frame is unholonomical, because

A 1
de° =5<H“u,,0“ r8" =3 C%.0° A ef) #0 (3.14)

v is invariant with respect to the right action of the group on P. In the case
with k,, =0 we have '

gozB O )
= 3.15
YAB ( 0 p2 hab ( )
For the electromagnetic case [G = U(1)] one easily finds
Zs| O )
= 3.16

YaB ( 0 _pz ( )
Now let us take a section e:E - P and attach to it a frame v°, a=35,
6,...,n+4, selecting X* =const on a fiber in such a way that e is given

by the condition e*v® = 0 and the fundamental fields {, such that (&) =83
satisfy [y, {.]1=(1/A)C p¢.. Thus, we have

1 _
w= x vX, + 7 (A%, 07)X,
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where
e*o=A=A°0"X,

In this frame the tensor y takes the form

wp T AZP WAL AL | AP LA
YAB=<gB 2p bc B|l sz ) (3.17)
)‘p lacA B p lab
where
lab = hab + :u'kab
This frame is also unholonomic. One easily finds
a -1 a b c
dv* =—C%° A (3.18)

2A

The nonsymmetric theory of gravitation uses the nonsymmetric metric g,,,
such that

8u8" = 8.,u8"F = 85, (3.19)
where the order of indices is important. If G is semisimple and k,, =0,
Ly = hap, det(h,,) #0
and
haph® =85, (3.20)
Thus, one easily finds in this case
YacY'C = yeay P =84 (3.21)

where the order of indices is important. We have the same for the electromag-
netic case [ G = U(1)]. In general, if det(l,,) # 0, then

Lpl® = L, 1™ = 8§ (3.22)

where the order of indices is important. From (3.22) we have (3.21) for the
general nonsymmetric metric 7.
It is easy to see that

I

®'(g)¥
D'(g)y=

and vy,4p is an invariant tensor with respect to the right-action of the group
GonP.

Y (3.23)
y
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In the case of any Abelian group the condition (3.23) is stronger and
we get that y.p is bi-invariant. Thus, in the case of G = U(1) (electromag-
netic case)

&y=0=4§y (3.24)
where £, is a dual base

0% (£5)= 5% (3.25)
A, B=1,2,3,4,5, and

ba= (£, &) (3.26)

Let us come back to the connection @“, defined on the group G. For
a typical fiber diffeomorphic to G, we can define &“, on every fiber F, = G,
x € E. Due to a local trivialization of the bundle P, we can define ©“, on
every set U X G, where U — E and is open. Thus, we get a linear connection
on P such that

o)
W g= a c

0] -(1/2)C%8
defined in a frame 8 = (#*(8%), 8°), where 6° is a frame on E and 6° is
a horizontal lift base.

This connection can be examined in a systematic way. Let us introduce
a metric on P in the following way:

pP=m*n®h,0°® 6" (3.28)

(3.27)

where n=17,,0"*®80" is a Minkowski tensor and h,, is a Killing-Cartan
tensor on G. One gets

ap
— [ T=p 0 AB _ (77 0 ) 29
Pas ( 0 hqb) and p 0 7 (3.29)

The connection @5 can be defined as

« %, 0
(" ) B2

where a‘;“,, is a trivial connection on the Minkowski space, @, is the
connection defined in Section 2, and ¢, is a diffeomorphism ¢, : F, > G,
xe U

It is easy to check that

ﬁpABZO: DAPAB (3-30)
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where D is an exterior covariant differential with respect to @ 5. One can
easily calculate the torsion for &,

A

Q% =AH®,, (3.31a)
A 1
Qabc :X Cabc (331b)
and the curvature tensor
R%,,=AX,H",, (3.32)

(the remaining torsion and curvature components are zero). The connection
"5 is neither flat nor torsionless. Moreover, it is still metric as a connection
®%, from Section 2.

The covariant differentiation with respect to this connection is con-
nected to the right action of the group G on P. Thus, the condition of the
right-invariance of the p-form Z*"%, _, on P is equivalent to
VB Ay 5, =0 (3.33)
where V « is a covariant derivative with respect to @ in vertical directions
on P. This means right-invariance of E. This can be written

Vver(x)E =0 (3333)
ver is understood in the sense of w.
P'(g)E=E (3.34)
where g€ G and
E — (:Al---AIB - B b B/ _B,B) A --A

B B’
&) 1 m):(p FipPrta e p e mis 1 ’BI’mB,’,,)

For a connection w on a bundle P, with curvature (), one gets

Viw=V,0=0 (3.34%)
Thus, we can rewrite equation (3.23),
Vay=V.7=0 (3.35)
This means that
Voyas=0 (3.36)
or
Vertmyy =0 (3.36a)

— . . A . .
For every linear connection w”y defined on P compatible in some sense
with y,5 we get

O*(g)wap = Ad,wap (3.37)
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which means that w,p is right-invariant with respect to the right-action of
the group G on P. We say the same for a 2-form of torsion and 2-form of
curvature derived for g, i.e.,

V.04, =V,0%=0 (3.38)

The curvature scalar is invariant with respect to the right-action of the group
Gon P,

0=V,R=X,R=(,R (3.39)

The condition (3.37) is the same as in the classical Kaluza-Klein (Jordan-
Thiry) theory in a non-Abelian case. A parallel transport with respect to
the connection &*; means simply a right-action of the group G on P.

Our subject of investigation consists in looking for a generalization of
the geometry from Einstein’s unified field theory (the so-called Einstein-
Kaufman theory; (see refs. 4, 5, and 61) defined on P i.e., for a connection
o’ such that

Dysp= ’}’ADQDBE@E (3.40)

where D is an exterior, covariant differential with respect to the connection
w*p, and Qe is a tensor of torsion for w*s. We suppose that this
connection is right-invariant with respect the right-action of the group G.

We can write equations (3.37)-(3.39) for a torsion, curvature, and a
scalar of curvature for w®. In this way we consider an Einstein-Kaufman
G-structure on the bundle of linear frames over the manifold P (i.e., a right
G-structyre).

We can repeat all the considerations changing right (left)-invariant into
left (right)-invariant in all places.

In Appendix A we consider in more detail the invariance properties
of the connection ™5 from a different point of view.

In this section we define w”p as a collection of 1-forms defined on the
manifold P (a gauge bundle manifold) and we choose for w”s a lift
horizontal frame (connected to the connection w on the gauge bundle).
The collection of 1-forms w®; becomes a linear connection on P iff it
satisfies the following transformation properties:

W g =3 (p)ots S P (p) —2 M a(p) dE4(p)  (341)
where
2(p)e GL(n+4,R), pelU,=P
and

0°=X(p)o’* (3.42)
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is a simultaneous transformation property of a frame. Having o*; with
transformation properties (3.41)-(3.42), we can lift it on a principal fiber
bundle of frames over P with the structural group GL(n+4, R), getting a
1-form of connection &,

& = Adginrary (g5 T (@5 X 54) ~ g, dg, ] (3.43)
where I1 is a projection defined on this principal fiber bundle of frames and
&: ZE€ Hﬁl( Up) > g,(2)= (prGL(n+4,R)\I,p(Z))~1 €eGl(n+4,R), pe U,cP

pr means a projection on Gl(n+4,R) in a local trivialization of the bundie
P” ¥ is an action of GL(n+4,R) on a principal fiber bundle of frames
over P, ¥ Gl(n+4,R)x P"> P" and ¥, is defined for Gl(n+4,R) x U,.
In this way we have an action of GL(n+4, R) on the bundle and for o,

\I’*_(g)c; = Ach(n+4,R)[g_l]0~) (3.44)
X“p are generators of the Lie algebra gl(n+4,R) of GL(n+4,R) and
g€ Gl(n+4,R). .
For a soldering form 6* one gets
6% = g, IT*(6™) (3.45)

Taking any two sections of the principal fiber bundle of P” frames E and
F such that

%% ._ 1A 3B
E*o=0""5X" 4

. 3.46
F*w = (I)ABX BA ( )
E*6*=¢"
F*gA = pA (3.47)
one gets the transformation properties (3.41) and (3.42). In such a way that
E(p)=F(p)X(p) (3.48)
equation (3.40) can be rewritten in a more compact form
Vy=S (3.49)

where
S(X, Y, 2)=[Tr(y®Q)IX, Y, Z) =§ ¥(X, e4)0*(Q(Y, Z))

Q(Y,Z2)=-Q(Z,Y)

is a torsion of the connection @; X, Y, Z are contravariant vector fields;
and 0%, eg, 6%(ep) = 8”5, are dual bases.
Or, in a different form,

V.9(X, Y)=S(X, Y, Z) (3.50)
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V is a covariant derivative with respect to the connection @ on the fiber
bundle of frames.

Moreover, now we consider v, Q, X, Y, Z, etc., as geometrical objects
living on appropriate associated fiber bundles to the fiber bundle of frames.
The condition (3.50) gives us the Einstein-Kaufman connection @ on the
principal fiber bundle of frames over P. For & right-invariant with respect
to the action of group G on this bundle of frames (lifted to this bundle
from P; see Appendix A for more details) the condition (3.50) is also
right-invariant.

4. FORMULATION OF THE NONSYMMETRIC
JORDAN-THIRY THEORY

Let P be the principal fiber bundle with the structural group G, over
space-time E with a projection =, and let us define on this bundle a
connection w. Let us suppose that G is semisimple and that its Lie algebra
is g. On space-time E we define a nonsymmetric metric tensor such that

8op = 8(ap) T 8lap]
gaﬁgvﬁ — gBagBy — 57&

where the order of indices is important. We define also on E two connections
@°g and W7,

(4.1)

@5 =007 (4.2)
and
W= W,.07
i B By _ (4-3)
Wo =0 —38%W
where

W=W,0" =3(W°,—-W,)8"
For the connection ®@°; we suppose the following conditions:
Dg.vp- = Dgup — £6Q%, ()07 =0
Qpa(l) =0
where D is the exterior covariant derivative with respect to @ and Q% (I')

isthe torsion of @“g. Now let us turn to the natural nonsymmetric metrization
of the bundie P. According to Section 3, we have

F=a* gD p a0 0° =¥ (gap)0" ® %) D p’h,,0° ®6°
y= W*g®p2,ukab9” AOP = T*(8rap10° A 0°)® p? ka0 A 8°

(4.4)

(4.5)



Nonsymmetric Kaluza—Klein and Jordan-Thiry Theory 309

where 8° = Aw“. In Appendix A we consider a more general structure and
give a justification for this special form. From the classical Kaluza-Klein
theory and Jordan-Thiry theory (with symmetric metric) we know that A =2
(refs. 1, 16, 17, and 58). We have

ga,B 0
— ._l._____. 4.
YAaB ( 0 2lab) ( 6)

lab = hab + Mkab

where

We suppose I, = h,, (the bi-invariant tensor on G) in order to get a
proper limit for the Yang-Mills Lagrangian for x = 0. It is worth noticing
that our results are valid for an arbitrary right-invariant nonsymmetric
tensor l,,.

Let us suppose that det(l,,) #0. Now we define on P, a connection
w®y (right-invariant with respect to the right action of the group G on P)
such that

Dyarp-=Dyap— ‘YADQDBC (') 8 =0 (4.7)
where
CUAB = rA13(:‘9C
and
P'(g)war = Ad,wap, ge G

D is the exterior covariant derivative with respect to the connection w*;
and QP (T) is the tensor of torsion for the connection w*p. Equation
(4.7) means the compatibility condition in Einstein-Kaufman sense. ®'(g)
is a right-action of the group G on P. After some calculations one gets

[, =T,
Fdﬁv = Ldtsy
FB'yb = "P2ldbgaﬁLdm/
Iy =p*lug"?(2H 5 — L )
[0 =N’
) (4.8)

I, = “? gaﬁlaszcb
Fbc;; = ”—15 gSEIHbNSac

o

a _ T
F hc_r be
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where LdBy, N?_, are Ad-type tensors on P such that

(0*) ylab + (Lao 85, N + Lal 815N %) = 0 (4.9)
lac8us8 " L o+ leaBen8" "L py = 21,48 8" "H %, (4.10)

and [, satisfies the compatibility conditions:
LT e+ LT = =14 C%, (4.11)

The connection &%, =1"%,.0° is defined on a typical fiber. According to
our assumptions, &, is a right-invariant form on P. ['% in the lift horizontal
basis has a tensorial transformation law (see Appendix A).

This means that

D*(g)Bap = Ad By (4.12)
or in coordinate language
Xl + Cu D+ Co e — Cul =0 (4.13)
Using notations from Section 1, we can write equation (4.13) as
VIl =0 o Vw%=0 (4.14)
and similarly
Vil =0 (4.15)

We can write for 1',, the following:
R(T4(g)) =T (g8") = Uulg’ MU (&) U (&)1 (g)  (4.16)
This allows us to write for f’dd,(g) the general formula
deb(g) = Udd'(g_l) Uc}c(g) Ub,b(g)Qd,c’b’ (4.17)
where
Q%o =I"0nle) (4.18)

and is defined in the representation space of the adjoint representation of
the group G. We now derive the following condition for Qe

(hap + i) Q% e + (Mg + pfod )% = —(hay + fap) C e (4.19)

For example, we can take f,; = C*q, where k, is an established index.

5. GEODETIC EQUATIONS

Let us write an equation for geodesics I'c P with respect to the
connection w”; on P, ie., V,u=0, or

utvaut=0 (5.1)
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where u, (u*(t)) is a tangent vector to the geodesic line, and V means
covariant derivative with respect to the connection w®z. Using equation
(4.8), one easily finds

Dua 224 < o

E"'{' uB(ucP2)[chga5(2Hd/35 - Ldﬁa) - idcgs Ldap] +u’u‘N »=0 (5.2)
d a
dt

One easily transforms (5.3) into

1 d(p’u?) 2 wfu

p?_ dt 0 p,.B

+u uyL“ __1'2' uﬁu (ga lbaN bc+gﬁslabN85b)+ubucfwaCb=0 (5.3)
0

a

l a a
';‘i uPu (gspl® NPy, + gpsl "N °0)

+ubucl, 4+ uPu L =0 (5.4)
or
1 d(pzua) cTha a
(? T+ wbul C,,-*-uﬁu"L 8
1 [4 c a a
"? [(Pz),ﬁuBSch +ufy (ga;slb Nsbc + gBal bNﬁcb)] =0 (5.5)
where
dp _
dt =p 3uB (5.6)

D/ dt means covariant derivative with respect to ® along the line to which
u“(¢) is tangent. In the symmetric Kaluza-Klein theory or in a five-
dimensional Jordan-Thiry theory, 2pu® (see Section 3 and ref. 22) has the
interpretation of (g°/me) for a test particle (g is the color or isotopic
charge of the test particle) and the system of equations (5.1)-(5.3) has the
first integrals u”p®= const. In our case it is possible iff

L“,,B = ~L”BP (5.7
facb = fabc (5-8)

and
(Pz),ﬁuﬁaacuc + uﬂuc(gﬁﬁlbaNabc + nglabNacb) =0 (5.9)

Using (5.9) and (4.9), we easily get
N’e==pg"p gloc=T"% (5.10)
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where
5(aB) =
g P 8an) = 637
§“®) is an inverse tensor for 8p) and
a 1 ~(88) a
r ac = Buaf P g0 (5.11)
b 1 ~(8y) b
r B =;g8ﬂg p,y6 ¢ (512)

Using (5.10), (5.7), and (5.8), we transform (5.4) and (5.5) into

Du® (q° N 1 « »
——‘I‘(—) u® [lcdg 8Hd;3¢>_‘2‘(lcdg 5_ldcgﬁ )Ldﬁs]

di my
_ﬁi F, (.}‘l’%) ~0 (5.13)
%(;‘In%) =0 (5.14)
or
%j+ (:r]l_i) uf (lcdgastﬁa —% (lag®® ~ L1g°*)L* s>
_% g~(aﬂ>(;15>,ﬁ =0 (5.15)

d b
;l;(zl—() =0 (5.16)

[g/mo=2%(ver(u(t))); see Appendix B], where |q||=(—h.,q°¢®)"? is a
length of color (isotopic) charge in the Lie algebra g of the group G [in
color (isotopic) space]. ||q||* is positive defined if G is compact. Usually
hg (the Killing-Cartan tensor) is negative defined in the case of semisimple
compact Lie algebras. It seems that || g||* could be connected to the Casimir
operator of some representations of the group G. If p =const (=1), we get

the equation
Du”

dt

1 a
_2ub<lbdgaBHdBy_E (lbdgaB —ldbgﬁ )Ldﬁy> u’=0
(5.17)
@
dr
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This equation, in the case of the symmetric metric g.g = Zsas lab = Aap = ba,
turns into

Du®

dt

- 2ubhbdg“BHdﬁyu7 =0
(5.18)

du® 1

—=0 — =2 ver(u(t

=0 o=2ver(u(r)
Sometimes it is convenient to consider g as an element of the Lie algebra
of G, (g). In this case we define

q=q°X, =2mg[%(ver(u(1)))]*X,

Equation (5.17) is called the Wong equation (see refs. 7 and 92) in the
case of G = SU(2) and contains the Lorentz force term for the Yang-Mills
field. From the historical point of view this equation should be called rather
the Kerner equation, because it appeared for the first time in Kerner’s paper
(see ref. 7) in curved space-time for an arbitrary semisimple gauge group.
Thus, we get in the first equation of (5.17) a Lorentz-like force term in the
case of the nonsymmetric metric for an arbitrary gauge field. Our equation
(5.13) or (5.15) contains two more terms. The first term

“%(%;) ”B(lcdgaa“ldcgm)lfdﬁs (5.19)
is known from the nonsymmetric non-Abelian Kaluza-Klein theory and it
vanishes if both metrics on space-time g, and on a typical fiber ,, become
symmetric. The second term,

_l "q”2 g(aﬂ)(_1_>
8 m(z) p2 B

describes interaction with the scalar force for the test particle.
Thus, we formulate the following theorem.

Theorem III.

1. Let conditions 1-4 from the Theorem I be satisfied and let P = p°].

2. Let there be an Ad-type field of 2-forms on P, L=3L" 8" A 8°X,,
with values in the Lie algebra of G, (g), such that (4.10) is satisfied.

3. Let there be on P an Ad-type field of 2-forms, I'=1I%.0° A 6°X,,
with values in the Lie algebra of G such that (4.11) is satisfied. Then there
is one and only one connection @ on the bundle of frames over P such
that the geodetic equation with respect to it possesses n first integrals of
motion that are Ad-type quantities on P (a gauge bundie).
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In order to understand better the physical content of geodetic equations,
we should project it on a space-time E. In the electromagnetic case it is
very easy because F,,, H,,, and p are well defined on a space-time E. This
is of course true in any Abelian case. In a general non-Abelian case we
should reformulate them in a gauge-dependent manner. Let us consider a
section f: E - P [i.e., f> r(f)]. We can define a gauge-dependent projec-
tion, r— g(t)e G, of a curve, t—> X(t) [given by equations (5.15)-(5.16)]
such that

X(0)=r(f(1)g(?) (5.20)
and define gauge-dependent quantities
F.,=f*H", (5.21a)
B, =f*L", (5.21b)
We easily get
H, (X (1)) = Ua(g(t) ) F* L, (f(1)) (5.22a)
L%, (X(0)=U(g(t) ") B* L. (f(1)) (5.22b)

where U is an adjoint representation. Let us define similarly as in ref. 9 a
gauge-dependent charge Q,

Q (1) =U(g() )g" (5.23)

[Q(t) =2m, Ads(g(t) ")x(ver(u(t))); see Appendix B]. Then let us define
a gauge-dependent tensor m,,,

map(1) = U" (gD U p(8(1)) oy (5.24)

Then the geodetic equations (5.13) and (5.14) can be rewritten in an
equivalent form

Dua i @ 1 @ &
7+(?no> u’B l:mcdg BFdBE_E(mcdg 5-_”1(ng5 )Bdﬁ‘s]
2
_ ”0“2 g(aB)(%) =0 (5.25)
&my P /e
%%_ C* QAP u” =0 (5.26)

where f*o = A®,6*X, is a four-potential.
Sometimes it is convenient to consider Q as an eclement of the Lie
algebra of G. In this case we define

Q1) = Q*(1)X, = e*qg =2m[Ad(g ' (1) A (ver(u(1)))]*X,
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Thus, we get the gauge-dependent form of a generalized Kerner-Wong
equation. The second equation, i.e., (5.26), is exactly the same as in the
symmetric Kaluza-Klein theory and should be called the Kopczynski
equation, for it appears for the first time in ref. 9. The gauge-dependent
charge Q is covariantly constant and in general not constant in non-Abelian
theories. The gauge-independent charge g is constant in Abelian and non-
Abelian theories. It is a first integral of motion. For this we will examine
the general properties of geodetic equations as equations of motion for a
test particle using equations (5.15)-(5.16). Let us calculate the length of a
gauge-dependent charge

QI = —haQ°Q°
=—he,y U, (g(t) U, (g(1) gq%q°
=—haq°q’ =gl (5.27)

Thus, the gauge-dependent charge has a constant length. This result can be
obtained directly from equation (5.26).

Let us consider the equation V,,,u(f) =0 in a more geometrical way
i.e., for horizontal and vertical parts of u(¢) [horizontality is understood in
a sense of the connection  on P (a gauge bundle)]. One has

hor(V,,(yu(1)) =0

(5.3%)
ver(V,u(t))=0
One gets
hor(V .,y hor(u(t))+V ., ver(u(t)))=0
(5.3%%)
ver(V,y ver(u(t))+V, . hor(u(t)))=0
and
hor(vhor(u(t)) hor(u(t)) +Vver(u(t)) hor(u(t)) + Vver(u(r)) Ver(u(t))
+ Vhor(u(r))ver(u(t))) =0
(5.3 %)
Ver(Viorqu(ry) Ver(u()) + Voercun) ver(u()) + Vigruey ver(u(r))
+Vver(u(r)) hor(u(t))) = 0
Taking v(t) = %(ver(u(t))), one gets
hor(Viorqucny hor(u(£)) +V 21y hor(u(#)) + V 2-1,00,% (0(2))
+Vhor(u(r))9?—l(v(t))) = 0
(5.3")

ver(Vioruey®(0(1)) +V9’é‘l(v(r))’e_l(v(t)) +Vhor(u(l))ﬁ_l(v(t))
V;e“‘(u(r)) hor(u(t)))=0
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Supposing

dv A A A

:i;(t)=0 and R*¥(g)k=L*(g)x =%

we get conditions imposed on the connection w”y (&) (see Appendix A).

Finally, we define normal coordinates on P. Let exp: T(P) - P be the
exponential map on (P, y), such that exp,:Tan,(P)-> P for each pe P,
exp,(V)=T,(1), where I',(1) is an endpoint of a segment of a geodesic
through p whose tangent at p is V for an arc parameter equal to 1. Choosing
an orthonormal basis {e,} for Tan,(P), we define a coordinate system in
the neighborhood of P assigning to the point exp,(} , x*e4) the coordinates
(x', x% ..., x"*"). We call them normal coordinates. It is easy to see that
the physical interpretation of normal coordinates is the following. They are
initial velocities and gauge-independent charges of test particles in such a

way that
1 a
x“ =~—2<q—) and X% =ug
2p°\mg

We can also define the function s,
n+4
iS2= (x1)2_ Z (xA)Z
A=2

and polar coordinates s, 8,, 6., ..., 6,.5. In the case of spacelike geodesics
our interpretation breaks down (as trajectories of ordinary test particles).
They are in this case tachyons. Moreover, supposing that u,” is an initial
velocity of a tachyon, we can maintain our interpretation.

6. GEOMETRY ON THE MANIFOLD P

Using (4.8) and (5.10), (5.11), and (5.12), one easily writes the connec-
tion o™ on P:

A _ W*(Gaﬁ)—ledbgsaLda;seb | Laﬁyey"'(I/P)gﬂsg(aﬂp,yoa (6 1)
B~ 2p goB(oHd 14 07 — pgleBl, I g° I 1/p) 58V, §2 6P + G h
P lhag P (2H 5 — L9,5)0” — pg*P’p gl 0° | (1/p)gspg "7 'p,40%0" + 0%

where L°,z =—L", is a tensor of Ad type on P such that
ldcgp.ﬁg w/.Ld‘ya + lcdgapg#yLdBy = 2lcdgap.g’”lHdBy (62)

&%, =1"7,6°is a connection on an internal space (typical fiber) compatible
with the metric I, such that

LT %+ L I, =—14C%, (6.3)
[ = -1 (6.4)
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The connection @“;, on the typical fiber is an analogue of the connection
®“g on space-time. Thus, we suppose for the sake of symmetry that

Q%w(@)=0 (6.5)
This means that
[.=0 (6.6)
§*# is an inverse tensor for the symmetric part of the metric g .z,
£ ey =87, (6.7)
Now we introduce the second connection
WAB=wAB—3(n4+2) 84 W (6.8)
where
W=W,0" =W, - W7,)8"
and n=dim G. It is easy to see that W is a horizontal 1-form
hor W=W (6.9)

Horizontality is understood here in the sense of the connection w {connec-
tion on the fiber bundie P over E with the structural group G). The
connection is right-invariant with respect to the right action of the group
G on P.

Thus, we have now all (n+4)-dimensional analogues from Moffat’s
theory of gravitation: two connections w”; and W*; and the nonsymmetric
metric y,5. Now let us turn to calculations of the torsion for w*,

04T = De¢* (6.10)

where D is the exterior covariant derivative with respect to the connection
™*p. One easily finds

Q% (1) = Q%,(T) (6.11)
Q%,s(I) =—~Q%,(I)
= 2P21bdgaBdeB + Pz(lbdgaﬁ + ldbgﬁa )LdB-y (6~12)
Q. (I)=2(H%,, —L%,)=-2K", (6.13)
« . 1 .
Q%N ==Q%s (I = A g568°"p 8% (6.14)
Q%pe(T) =208 P p glipey = 211pg"“® p gy (6.15)

Q%) = Q% (1) = —(C* +21%,) (6.16)
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where Q% (T) is the torsion of the connection &% and Q%.(I') is the
torsion of the connection »”,. We will find later the physical interpretation
of the tensor K“,, on P, which is of course of Ad type. Equation (6.15)
gives us an independent interpretation of the tensor k,, as a factor in a
torsion tensor Q¢,,. Let us turn to a calculation of the 2-form of curvature
for the connection »” 5. We have

Q4 (M) =do’s+w’c ros (6.17)
One easily gets
Q% () = 0% (D) + [ Leag ™ (2H o = Lug) L1
‘ldbgSaLds;sll'Ib,w]6"L N [Plbdgawgﬁsg(ag)P,g(ZHd;m - Ldm»)
_v#(ledbgaaLdas) + Pg(aw)P,wlchcau]Ou A 6°

+ (p4ld[bl|e|f]g5“g§7Ld57Le§ﬁ +%2 Lipg L5 C 7y

+g~(aw)P,mgssé(sg)P,gl[m) 0" n ¢’ (6.18)
Q%I = {v[#[lebdgaBQde]s —-L%3)]

+£2i Lag*P(2H 5 — L) Q7. (1) —pg P p sl H ..,

+ploag ™ (2H “yp ~ Ld[mm)glsmg(aﬂp,y} 0% n 6"

H{V, (08P p o) lpa + Vol p?loa CH 5 — L7,5)g""]
_p4ldabbfg5agVBLd57(2Hf;u.B - Lf/.l.ﬁ)

_g(ag)p,fgéug(Sy)p,vlba}ea A 6"
+ [g g(aﬁ)P,gldedca +PB§(Yﬂ)P,/3gMLd571d[al|bc]] A 0% (6.19)
a o a 1 a Ay T 1 5(8v) a
Q%) =\ V.l g1 +5 L 5yQ #D(F)+;gﬁ5g pH

1 . a v
+; gB[ﬂg(ay)pn’L \ﬁl‘y]) 6" r 0

_ 1 . a & o a a
+ [V“/ ('p— gBSg(a“)p,p) 8% =V L%, — ledngML uyLdﬁﬁ
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1 y

t 8518 p 58,8 p 1.5 b] AN
v _1_ ~(8v) 8‘1 __1_ ~(8v) Ca

+|{ Vi P 8ps8 Py <l 2 s P b

+pg,,,,g("”)p ,AgsyLda;ald[baac]) 0° A 6° (6.20)

a ~a (T a 1 ~(8y)
Q%M =0% M)+ —8%V,, ;gismg Py

1 a ~ o -

+5— 6 bgﬁag(&y}p,'yo /J.V(r)
P

+0°hag L (2H 15— L"V]B)] 0“ £ 6"

+[- Pg(ymp oL, —plbd~(B ” V(ZHduB - Ldyp)aac]on A B¢

_g'yﬁg P,Vlb[c5 d]e nE° (6.21)
where V,, means the covariant derivative with respect to the connection
@%g. Here Q% ()i is the 2-form of curvature for the connection @4 on the
space-time E and Q b(F) is the 2-form of curvature for the connection @9,
on the typical fiber; V¥ means its covariant derivative. Q* s,(I) is the torsion

of the connection @z on E. Using (6.18)-(6.21), one easily reads the tensor
of curvature for the connection w”p,

R%,.(I') = R%,.(T)
+2p7[1ag® (2H . — L1 )L 1 + g L H,, 1 (6.222)
Raﬁpb(r) = ‘Rasbu(r)
= Plbdgawgﬁsg(ag)P,g(szw - Ld;m))
“ﬁn(ledbgaaLdzsﬁ) “‘Pg(M)P,mlchcﬁ,u (6.22b)
Ry (D) =20 Lagplle 18°°8 L%, L s

+§(aw)P,wgﬁsg pfl[bf]+ ldpg “L? SBC bf (6.22¢)

Rabw(r) = 2v[p[lebdgaB (2HdV]B - V]B)]
+p ldgaB(ZdeB L')Q YD)~ pg®p alcH
+2plag ™ (2H 181~ L 16D 81518 . (6.22d)
R () = —R%,4(T)
=vy(pg"(aB)p,B)lba+6a[pzlbd(2Hduﬁ _Ld}LB)]

- p4ldalbfg5agVBLd5y(2pr.B - pr,B) - g.wg)l),gga#g.'(su)l),ulba
(6.22¢)
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Rabac(r) = pg(aﬁ)p,BIbkckac
+ 2P3§(yﬂ)P,BgaaLdSyld[alwc] (6.22f)
R%,,(T)=2p%lag™ (2H 10— LYo L1
1 . ~ o ae (1 -
+; o bgaag(awp,yQ M-V(F) —28%Vp, (; gISIM]g(SY)pJ) (6.22g)
Rablw(r) = _RabCI—L (= _pg(YB)p,ﬁlbcLavﬁ
~plhag?p (2H s — L?,5)8°, (6.22h)
Rabdc‘(r) = Rabdc(r) - 2g75§(sy)p,vg~(YB)p,ylb[caad] (6-22i)
Raﬁ.w(r) = 2V[#Lall3!v} + LaBVQy;w(T)
2 . a 2 . 2 .
i 8558 7P 4 H ) o8 L% 101 (6.22j)
RaBby(r) = '—RaB'yb(F)

" _ {1 . . .
=V,L%, =V, (; gﬁag(a“)p,,,.) 8%+ p g™ L, L%,
1 ~(58) ~(vp) a
*;E 85,8 " Ppgp8 " P.ubp (6.22k)

a o 1 ~ a 1 ~ a
R Bbc(r) = 2V[b (; gBBg(S‘Y)p,y) 6 c] _; gBSg(&/)p,'yC bc

+ng'yvg(Vﬂ)p,,u,ga‘yLdSBld[baac] (6.221)

R (T') is the tensor of curvature for the connection @%, and R%,(T")
is the tensor of curvature for the connection w®,. Using (6.7), one easily
gets the 2-form of curvature for W*g,

Q%5(W)=0"4(T) T3m+2) 8% dW
=04,() —3(’::2) 84 W, 0% A 07 (6.23)
and the tensor of curvature for W#,
R, (W) =R, ([T) —RnSTZ_) 86 Wi
R (W) = R (1) =30 8 Wiy (6.24)

Raﬁcd( W) = Raﬁcd (F)
Rabcd( W)= Rabcd(r)
RaB,u.b( W) =R aBu.b(F)



Nonsymmetric Kaluza~Klein and Jordan-Thiry Theory 321

where R”5cp(W) is the tensor of curvature for the connection W5, and
R*5cp(T) is the tensor of curvature for the connection .

Now we pass to the calculations of the Moffat-Ricci curvature scalar
for the connection W*; on the manifold P. We have

R(W)= YBC [RABCA( W) +% RAABC(W):I

= gh [R“BW( W)+ R%,.(W) +% R% 5, (W) +-12- Raaﬁy]

+l;;c [R“bm( W)+ R (W) +% R, (W) +% R?,,.( W)] (6.25)

Using (6.25) and (6.24a)-(6.241), after some calculations, one gets
R(W)—R(W)+R/§F)—p2(21 HHY —1g°g? L zH,,.)

P
=3 80€ 70,87 P+ QUp) (6.26)

where

noo. vig e M= e
Q(p) =5;gs,ag(5”p,yg“ Qﬁm}(r)"r? Vo (pg““®pg)

S T
+ "gBVVy (; 8333(5 )P,a>

n = {1 - {1 .
T C P R MR I

=l[ C]l[dc]—n(n_l) (6.28)
He=g"H", . (6.29)

R(W) is the Moffat-Ricci scalar of curvature for the connection W*, on
E and R(F) is the Moffat-Ricci scalar of curvature for the connection &,
on a typical fiber. Now let us pass to the calculation of a density for the
Moftat-Ricci scalar of curvature

y2R(W)=(—g)"[I'>p"R(W)

=(~g|l|>“2[p

+2
" " Lym

R()
4 2—n

n Z(mg(vu) +n g[yv]g‘slug"(ﬁv)p,yp,y)]+8MK;L (6.30)
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where
-1
Fvm =g (L HH? — 1,,8°g" L gL%,,.) (6.31)

and
m= (1" 4= 3n(n—-1)] (6.32)
I=det(l,,) and

n n— ~ v, -~
K* =_2_ p 1(5g(rw) -g ;zgsyg(&/))p,y

From the variational principle point of view, for the density y'/>R( W), the
four-divergence 9,K* does not play any role. It could play a certain role
for some topological problems. Thus, we really only have to deal with B( W),

R
2(—71) + 87Tp"+2$y]v1
P

B(W) = <—g|z|>”2[p"zi(vv>+

+p" T (mg" + nzg[“”]gsyg‘sy’)p,yp,y] (6.33)
Finally, we write down some identities concerning H®,, and L“,,
coming from equation (6.2),
vira __pac v
gILe,, =h“l H?,g"" (6.34)
ldcgaugaFLdochp.v + lcdg#crg VBLdBUHC/.LV = Zchglw-g VBHC;J,VHd o (6'35)
Lg*“gP LY gL°,, = 188" L sl (6.36)

Note that all the formulas presented in this section are valid for an arbitrary
right-invariant I, i.e., such that its symmetric part is not proportional to
the Killing-Cartan tensor on G.

7. CONNECTION &°,. COSMOLOGICAL CONSTANT

In R(W) and B(W), R(T)/p>" plays the role of a cosmological term.
Let us turn to the ca1~cu~lation of the Moffat-Ricci curvature scalar for the
connection &%, i.e., R(I"). One can find, using (6.3), (6.4), (4.13), and (6.6),

R(T) = 217 C 1% + 17 Cop D + 17T 1,0 (7.1)
One finally gets
R([) =21“h,, +31°T7.C",, (7.2)
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where "%, satisfies compatibility conditions
ldbf‘dac(l"“) + ladfdcb(ﬂ) = “ldbcdbc (7.3)
and
Fac(u) =—TPulp),  TPu(p)=0 (7.4)

It is easy to see that R(I) is a rational function of u. However, it is a very
hard task to find the exact dependence on u. Therefore, we do not have an
exact solution of (7.3) and (7.4). Moreover, we can find an asymptotic
dependence for a very large w. If u -~ 00, equation (7.3) turns into

kdbf‘dac + Kaa fdcb = “kdbcdbc (7.5)

Thus, in the limit of a very large u, r “e() goes to the constant f“’bc with
respect to p. On the other hand, we have

Aab

A

lab

(7.6)
where A =det(l,,) and A® is a cofactor matrix formed from . It is easy
to see that A is a polynomial of nth order with respect to u and A® a

polynomial of (n —1)th order with respect to u. Thus, we finally get for a
very large u

o on 200 3 A%, const
R(IN)= ht=—17,C*, =~
( ) A 2 A ki pb w
or
R(I") = const forlarge u (7.7)

It may be possible to find an exact solution of (7.3) and (7.4). In this way
we get

P,(n) or P, (u)
Qi(p) Qmp)

where P, Q,,, and Q,., are some polynomials with respect to u of order
m and m+1. The P, and Q,,+, {Q,,) do not have common divisors. If the
polynomial P, (u) has a real root u,, we have

I'E(f‘)=0 for pw=pu,
If we suppose that I/, has a potential £/, such that
f“f=%f‘fd,v”/\ub=dEf=d(Efdvd) (7.9)

We can find for I'/

R = (7.8)

M= _2Ed[a,b] ~E9C (7.10)
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where ,b means an action of the left-invariant fields on the group G. For

I ab @ rlght invariant quantity we suppose the same for E%,:

E ab+C ab'—‘ e Cdeb:ea—o (7.11)
or
V.E pEL, =0 (7.11a)
Using (7.11), one easily gets

I, =CWEY, -~ C4 B, + C%EY (7.12)
Equation (7.12) defines [, which satisfies conditions (7.4) identically.
However, E° should be a solution of equation (7.3) if we substitute

equation (7.12). .

Note the following. ', has at least g(n)=n[n’/2—3n—1) indepen-
dent coordinates. From equation (7.12) one easily gets that it possesses
f(n) = n* independent coordinates. Thus, we should have g(n)=f(n). This
is possible only if n>3(3++/17), where n = dim G. Thus, we get dim G > 4.

Thus, for G = SO(3) we cannot use the formula (7.12).
In the case of a symmetric I, = h,;, one easily finds

=24, =189 (7.13)
One can express R(T") in terms of 2%, and gets

3(2—n) 3

R=21"9p,, +2(n ) 1=, “2-D 1=, (7.14)
where
By = iy, (7.15)
Let us consider the cosmological term for p=1, i.e.,
R(D)=2(n) (7.16)
In general, ®(u ) has the following form:
() = P.(n) P (1) 7.17)

Gnni() " Qulp)

Thus, we can make the cosmological term to vanish if we choose u = ¢ a
real root of P,. In this way we get the physical interpretation of the
dimensionless constant u connecting it to the cosmological constant. If we
come back to the ordinary system of units, the cosmological term will be
very big numerically because of the numerical constants in front of it. Thus,
if R(T") is of the order of one, the cosmological constant is 10'*’ times bigger
than the upper limit from observational data. The only mechanism to avoid
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this unwanted fact is to make it vanish by choosing an appropriate u.
Sometimes we can also make the cosmological constant as small as we want
if we choose w sufficiently big, i.e., |[u|=10"".

Let us consider the connection f“",,c( g) on G, g € G. Moreover, one has

T (g) =T5c(e) Us(g UL (@) Us(g) (7.18)

where U is an adjoint representation of G (see Appendix A). Thus, in order
to find f‘“bc(g), it is enough to find '%.(¢) for I,(e), i.e., to solve the
equation (7.3) for g=e€ G.

It is also easy to see that

R([)(g))=R(I(e)) (7.19)

Let us consider equation (7.3) for G=SO(3) as unit element of SO(3).
Using (2.24), one gets

11‘333(5) = f‘332(5) = 12‘323("5) = 1:‘331(5) = f‘322(5) = 1‘2‘313(“3)
=11 (e) =1 1(e) = T2%5(8) = T200(e) = T2, (8) = T%1(e)
=12 (e) =T"0(e) =T"0(e) =) =T" () =0 (7.20a)

~ ~ 1
I‘321(8) = _r312(5) = _5

f‘332(8) = —f‘223(5) =

wi+4
- . 2+2
f21(e) = —T%5(e) =ﬁ—2§ (7.20b)
Me) == Ta(e) ===
32 23 [.L2+4
i — I
ai(e) I3(e) M2+4
Using equations (7.1) and (2.26)-(2.27), one easily gets
. - 202u +Tu?+25u +20
O(u)|G-som) = R(I'() |G=s0m = £ ,u; 2“ ) (7.21)
(n"+4)
For large 1 we obtain
~ o~ 4
¢(M)|G=SO(3>= R(F(/-L))IG=SO(3)~; (7.22)

Let us consider the cubic equation
21+ T +5u+20=0 (7.23)
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and let us find its roots using the Cardano method. Equation (7.23) can be
reduced to the standard form

, 19 620

el = .
y % y » (7.24a)
using the substitution
w=y-7/8 (7.24b)
The resolvent equation for (7.23) looks like
620 19°
=0 7.2
Ty T ar (7.25)
The discriminant of (7.25) is
4p® 3583541 12-17-67-16
D=g+2E - 3.0 (7.26)

27 274 24.3°

Thus, the equation possesses only one real root,

1([ 1 /3583541\"2 ]1/3 [ 1(3583541)‘/2]1/3}
=—|=[=——] -31 +1310+—
% 3{[24( 3 ) 0 MO+ \T3

(7.27)

For this

0= __l{er[_1_(3583541)‘/2_310]‘/3+[310+_1_(3583541>‘/2:"/3}
Hom 7312 24\ 3 24\ 3

(7.28)

is the only real root of equation (7.23).
Thus, one gets

Ii(f(ﬂo)) |G:SO(3) =0 (7.29)
and the cosmological constant vanishes. One calculates o and gets
o= —5.557669363 - - - (7.30)

Moreover, note that the connection (7.20a)-(7.20b) does not satisfy
(7.4). Thus, it should be rejected as unphysical, and because of this the
SO(3) group is not unphysical.

Let us consider (7.3) for dim G > 4 and rewrite it for indices abc, cab,
bca. One gets

LipT e+ Loa I =—1,C%
ldaf‘dac + lcd f1dba = adCdcb (7~31)
ldcf Yoat bal = —1aC%,
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Adding these equations, one gets

Fhae + Lacn + T ona = = 300aC%e + LaaC o+ 1aC %) (7.32)
where [po = hapl e Substituting (7.12) into (7.32), one gets

Clac(Bpp =2E ) + CPp(Bop —2E,0) + CPha (B —2E,0)

—i(lbdcdac + ladcdcb + lcdcdba) (733)
Equation (7.33) is identically satisfied if
Eab *ZEba = —%lab (7~34)
Thus, we get
1 1 uw ‘
Ba==Qlpy+h)==hy,—=k, 7.35
ab6(bb)2b6b (7.35)
or
—a _ 1 M
=4, =5 8, e Kk, (7.35a)

where k9, = h*k,,. Substituting (7.35a) into (7.12), one gets
P P g

1
rdgfzicdfeﬂdef:—[ cdef+6(cszd CkPet+ Ck?, )] (7.36)

Substituting the last equation into (7.2), one finds

. (4n+1"1,)
R(IN=——~———2~ 7.37
(M= (7.37)
for n>4. For 1, a right-invariant quantity, we get
5 5 (4n+ 1" (e) lup(2))
R(I'(g))=R(I'(e))=— - (7.38)
4(n—1)
where £ € G and it is a unit element of G.
Thus, we get, using (2.39)-(2.39a),
L (5nA+2 Z[n/z] {j(Az 2i-1=A2512;))
R F - _ )2i— )~ 1,2) .
) 4A(n-1) (7.39)
where A =det(l,,(¢)) and Ay, Ay ,; are minors of Lo(e). Thus, R({)
is a rational function of {’, j=1,2, ..., [n/2], and it is zero if the polynomial
of ¢’ is
[n/2]
5nA+2 Z i (AZJ 21~ D1 2;)=0 (7.40)

Jj=

for some set of &/, j=1,2,...,[n/2].
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Moreover, we can rewrite (7.39) in the more convenient form

—— _ fn/21 (_(gf)2+§f)\2j_1)
R)= (5" 2 X @ o)

In the case of A; = A the formula (7.41) is simplified and if simultaneously

we put ¢/ = u, then we get

_[,u2(5n —2[n/2])—2uA[n/2]+5n17]
(n>+4%)

)[4(n—1)]‘1 (7.41)

R(T)= =d(p)  (742)

Let us consider the quadratic equation

,ﬁ(&:—z[ﬂ)—zm\ [ﬂﬂm\z:o (7.43)

The discriminant of (7.43) is

([ sl o
[l o

Thus, we do not have real roots.
For large u we get

and

_(5n=2[n/2])

R() ~ 7.46

)~ (7.46)
Let us consider the general case for ﬁ(f), i.e., we do not suppose equations
(2.39)-(2.39a). Thus, in this case h,, and k,, do not commute. In order to

do this, let us consider the matrix

L, =1""(e)ha(e) (7.47)
Thus,
1°°(&)lya(e) = Tr(Ly") (7.48)
In this way one gets
Tr(L,)= Y p; (7.49)
i=1

where
Ly"e"(i) = pie" (i) (7.50)
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In equation (7.49) we sum over all eigenvalues with their multiplicities.
They can be complex. Moreover, the sum is real. Equation (7.50) can be
transformed into

(Aihay, + ukap(£)) (i) =0 (7.51)
where
‘:Z—H’ 0i+1#0 (7.52)
or
o= ti L#1L (7.53)

In this way we get

n 14+ A,;
1°(e)ho(e) = Y —— (7.54)
iz11—A
where we have
I(A)=det(Ah,, + uk,,(e))=0 (7.55)

In equation (7.54) we sum over all roots of (7.55) with their multiplicities.
Thus, we have

R(D) = (4n + .Zl 1—-) [4(n—-1)7" (7.56)
We can rewrite (7.56) in the form
R()= (4 +,Z ( “é)) [4(n—1)]"" (7.57)
where we have
det(Zhyy + kop) = 0 (7.58)

and p is such that 1—pud; # 0 for any ¢; satisfying equation (7.58). Thus,
we have for the cosmological constant

¢(u)=—{4n IT Q—ui)+ Z (1+ug) l;[ (1—pug) }/

{4<n -vila —Mm} (7.59)
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It is easy to see that ®(u) =0 if

n

an 11 (1-p8)+ ¥ (1+46) 1T (1= pg) =0 (7.60)
j=1

i=

which is an algebraic equation of nth order.
Let us suppose that {; ={ fori=1, 2,. .., n. In this case one easily gets
_2 (7.61)
Ho 37 .

and ®(u,) =0.

8. CONFORMAL TRANSFORMATION OF g,,.
TRANSFORMATION OF THE SCALAR FIELD p

In Section 6 we obtained the Lagrangian density B(W),

1 nypy n— n
WB(W)=(_8)1/2P R(W)+p 2Ls<:al(p)+877-p +2LYM
+(=g)"*R(D)p"? (8.1)
where
(—g)l/z cryd aw _f c d
LYM =- (2lcdH H a8 g “L aﬁH wy,) (82)
L= (=) (g™ + 1" g5, 80 ., (83)

Ly is the Lagrangian density for the Yang-Mills field and L, (p) is the
Lagrangian density for the scalar field p. This Lagrangian [B(W)] is in
the same form as in Bergmann’s paper (see ref. 50). Bergmann considers
the general Lagrangian for the tensor-scalar theory of gravitation, including
Jordan-Thiry theory and Brans-Dicke theory (refs. 93 and 94). In his
Lagrangian there are four arbitrary functions of the scalar field, f;, f5,
f3, f4+. In our case we have

filp)=p"

fz(P):877'P2 (8.4)
filp)=p""

filp)=p""

There are of course some differences, since our theory is nonsymmetric.
There exists a skew-symmetric part of g,., and because of this, we
have a different Lagrangian for the scalar field p. Simultaneously, in the
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place of the ordinary Ricci scalar of curvature we have the Moffat-Ricci
scalar of curvature. In the place of the Lagrangian for the Maxwell field
we have a Lagrangian for the Yang-Mills field in the nonsymmetric version.
Moreover, the general features are the same. We really get a scalar-tensor
(nonsymmetric) theory. Now we proceed with the conformal transformation
for the metric g,, and the transformation of the scalar field p. This is only
the redefinition of g,, and p,

p=e ¥ (8.5)
1
g;t_u - enwguu :F g/J,V (8'6)

This procedure is of course from ref. 50. The only difference is that g, is
now nonsymmetric. After the transformations (8.5) and (8.6) we get
mll/z B(W)=(~g)"*{[R(W)+ e R([) +87 e "2 Ly + Loca(¥)}
(8.7)
where
Loca(W) = (mg" +n?g g, g0 ¥

(8.8)
m= [[ddl[dc] —371(" - 1)

It is easy to see that the scalar field ¥ is chargeless (it has no color changes).
However, it couples to the gauge (Yang-Mills) field due to the term

8me "IV L oy (8.9)
It couples also to the cosmological constant
eV R (8.10)

These two terms, (8.9) and (8.10), suggest that the scalar field is massive.
This is different than in Brans-Dicke theory, where the scalar field couples
to the trace of the energy-momentum tensor for matter (refs. 93 and 94).
We can consider a more general expression, i.e., [ R(W)+ 8]Vy, where
B is a constant. In this case we get one more term in the expression (8.1),
ie., ({11"*B(~g)"*)p" or ({I|*B(—g)?) e™™. This term plays the role of
an additional cosmological term and can be added to the term ®, leading to

D= (B+ Y R(T)

Forp=1(¥= 0) this leads to the effective cosmological constant 8 + R(D).
Taking B —~R(F) we can make it vanish. However, for p (or ¥) non-
constant, this does not work. Fortunately we have a completely different
mechanism of vanishing of the cosmological term and we do not need such
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manipulations. Moreover, some authors use this additional term in the
classical non-Abelian Kaluza-Klein theory in order to solve the problem
of the cosmological constant. We do not consider this to be in the spirit of
the original Kaluza-Klein theory and no longer consider this additional
term.

9. GAUGE INVARIANCE OF THE LAGRANGIAN

Let us consider the problem of gauge invariance of the Lagrangian in
our theory. In geometrical language this means that

P(g)L=% or X, =0 (9.1)

where X, means the infinitesimal right-action of the group G on P in the
direction a. Equation (9.1) is satisfied, because of the right-invariance of
the connection w4 5. Moreover, we will check it here independently, starting
from equation (6.33), which defines the Lagrangian #. Equation (9.1) is
equivalent to

V. £=0 (9.2)
[see (3.27) for the definition of ¥.]. One easily checks that
V.RD)=0=V.m (9.3)

In the same way we can check that
V. Ly =0 (9.4)

supposing that L?,,, is an Ad quantity (Ad type). Moreover, we are supposed
to check the invariance of the formula (4.10) which defines L°,,.
Let us rewrite (4.10) in the following form:

QedgsﬁgaaLdaa + gaagEULeﬁé =28.:8""H (9.5)
where
Q%= Il (9.6)
Let us act on both sides of (9.5) by X,. We get
X;Q°4 (8568 L) + Q°aD 1 (8558 L)
+ 2.08° D4 L%, =28.58" CyrH %, 9.7)
where we put

XL yo = D% L%, (9.8)
XfHd,_-,.a = ququaa
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The last condition means that H? , is an Ad quantity. quf defines a
transformation property of L°,,.
Using equation (9.5), one easily gets
8588 L0 (X;Q u + QD4 — CprQ74) + 8058 Lo (D4 — C4r) = 0
(9.9)
Equation (9.9) must be identically satisfied for every L?,, and g,s. Thus,
we get
Dedfz C3df (9.10)
X;Q 4+ QD% —C*,/Q%4 =0 ' (9.11)
Equation (9.10) means that L?,, is an Ad quantity and equation (9.11) is
equivalent to
V,Q%=0 (9.12)
This is equivalent to
V=0 (9.12a)
which is the condition for I, known from Section 2.
Now the gauge invariance of ¥y, is easily satisfied.
Let us prove the gauge invariance of the Yang-Mills Lagrangian £yy

in a different way, supposing that I, is right-invariant and L*” is of Ad
type. One has

1
Pym = = la(HH'=L*H",,) (9.13)
w

Let us take two different gauges (two local sections e and f of the
bundle P) and

e* L% (e(x)) = B*"(x)

FHY, (e(x) = F,, (x) (5.14)
FELE(f(x)) = B (x)
SR (f(x)) = F4,,(x) (-15)
E*Iai(e(x)) = Meq(x)
(9.16)

fHla(f(x) = (x)
One writes mg(x) = hyy + ung, (x), where ng(x)=e*k,,(e(x)). Let the
matrix U =(U%)= Ad,-1(,, be a gauge-changing matrix. One gets

Fd,u,u — UdaFa,,u/

B =U? B (9.17)

= ik 7l
meg = U U ymy
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ie., (U%)=U=Ad,y,, where
UkoCd = 5kd
One easily gets

Lymle(x)) = Lym(f(x)) (9.18)

which proves the gauge invariance of the Lagrangian.

This result can be obtained directly using a technique of a vertical
projection of any curve t > p(#) € P, In this way we prove that the Ly ( p(t))
does not depend on a gauge on any curve in P. Let us consider a gauge
e r(e) and define a gauge-dependent vertical projection - g(t)e G of
the curve ¢ - p(t) using the formula

p(t)=r(e(t))g(t) (9.19)

We get
He, (p(1)= U (g(t) " YF* . (e(1)) (9.20)
L%, (p(1) = U’(g() ™) B ., (e(1)) (9.21)
La(p(1)=U(g(1)) U 1(g(1)) maa(e(t)) (9.22)

Thus, for any gauge e and for any curve - p(t), one gets
La (P(DYH L, (p()) L% (p(1)) = may(e(1)) F,,(e(£)) B¥*(e(1)) (9.23)
ie.,
Lym(p(t)) = Lymle(t)) (9.24)

We can also work in a different way using properties of H,,, L°,,, and
1, with respect to the right action of the group G on P. We get

D'(g)Lym=P'(g)(LaH . L™")
= (D'(g)La) (e (8) H . ) (¢'(8) L)
=1L U (U 4 (g)U(g Y H LU (g7 ) L™
=log H W LY = Ly (9.25)

It is worth noticing that in general VE™'&°] , 5 0; V#*"¢ means a gauge
derivative with respect to the connection w.

10. VARIATIONAL PRINCIPLE. EQUATIONS OF FIELDS.
INTERPRETATION AND CONCLUSIONS

Let us consider the Palatini variational principle for R(W),

8 J y'?R(W)d"x=0
v

VeP, v=UxG, UcE (10.1)
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d"x =d*x dus(g), where dus(g) is a bi-invariant measure on a group
G (identified with a typical fiber via ¢,: G- F, =G, xc U). It is easy to
see that (10.1) is equivalent to [see (6.33)]

1
Wfs JU B(W)(-g)"*d*x=0, UcE (10.2)

Using the gauge invariance of the scalar curvature, we integrate over a
group G.

We redefine g, and p as in Section 8. Thus, we have the following
independent quantities: g,,, W*,,, ¥, and w. We vary with respect to the
independent quantities. After some calculations we get

gauge scal

R, (W)—1g, E(W)=87K(T,, + T,.(¥)+g,.¢) (10.3)
g, =0 (10.4)
g)-/«VO'_gCul:g a'-gp,gl_—‘go'v :0 (10.5)

gauge

V, (LpL®*) = 2g[“‘” Vﬁ(h b8 HC,,)

—(n+2)3, V[ L, L —2g"P* Y hg™H )] (10.6)
P\ N 1 s
ax* ax*  (—g)V* "

[(n2+2m)g'(cm) nZgVM ~(ao)]

2
~ (o n va v v ~(a ~( o 8\1,
X{(—g)’”[n §4 = (g7 + g gY) —2mg™ )]}axa

—8(n+2)me V(P —20)=0 (10.7)
where

gauge

lab 7L & a v a
TaB = _—_{g‘yﬁg lg L {aLbTE_zg[M ]H( p.qu)aﬁ

447

1 a, k4 v a "
— o BealL™ H*,, —2(g"H",, ) (g" ]H"W)]} (10.8)

is the energy-momentum tensor for the gauge (Yang-Mills) field, and

scal (n+2)¥

T Q — + (Y%) 5(vw)
aB( ) 1677 {(gxozgwﬁ gwozgxﬂ)g

nz
X [—2— (gg..—8%,)Q , + m‘I’,,,] v,

_gaﬁ(mg(w)_l_n2g[ﬂv] ~(v8))q, \I, } (10.9)
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is the energy-momentum tensor for the scalar field ¥. We have
K= "y (10.10)
It plays the role of a gravitational ‘“‘constant”

= g2(n+2)¥ R(T)

o
167

(10.11)

@ plays the role of a cosmological “constant” (cosmological term)

m=(l[dc]l[dc]-—3n(n—-1)) (10.12)
Lo =(-g)?gP g™ L7
7 (10.13)
g[w/] - (_g)l/2g[;w]
V8% means gauge derivative and
Lic8up8 L o+ 1a8an8™ "L, =21 g, 8" "H, (10.14)

Equation (10.14) can be rewritten in a matrix notation
gg ) (IxL)+g'g /(I +*L7)=2g"g '(I" xH")  (10.14a)

where T means matrix transposition and “*” means the action of an (n x n)
matrix on an n-dimensional vector.

The left-hand side of equation (10.6) can be rewritten as (—g)'/?
Via“ge(labL“""), where \—7ia“ge means the covariant derivative with respect to
the connection &“; on E and “gauge” at once.

Equations (10.3) and (10.4) are equations from NGT with Yang-Mills
and scalar sources with a cosmological constant. Both constants, gravita-
tional and cosmological, depend here on the scalar field ¥, which propagates
according to (10.7). Equation (10.5) is the compatibility condition for the
connection @“5(I'“5,). Equation (10.6) is the second Yang-Mills equation
with sources for L, The first Yang-Mills equation is of course the Bianchi
identity for the connection w [see equation (1.8)]. It is easy to see that

gauge

g¥T,5=0 (10.15)

scal

g T, (¥)#0 (10.16)

Now we are able to interpret all quantities in our theory. First of all,
itis easy to see that L“,; plays the role of the second tensor of the Yang-Mills
field (gauge) (i.e., an induction tensor) strength and equation (10.11)
expresses the relationship between both tensors H*,; and L.
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In the electromagnetic case [G = U(1)], we have to deal with tensors
F,s and H,z (see refs. 18 and 19), which are the first and second tensors
of the electromagnetic strength (an ordinary and an induction one). In the
classical electrodynamics of continuous media (ref. 68) or in nonlinear
electrodynamics (ref. 69), it is necessary to define both of these tensors.
The first tensor F,; is built from (E, B) and the second from (D, H). Here
we build H%,; from (E% B“) and L°,; from (D® H®). For example, in
quantum chromodynamics we have to deal with D* (see ref. 95). The vacuum
behaves as a dielectric for the gluon field.

If the metrics g.5 and I, are symmetric, H®,z = L®,5. Thus, the skew—
symmetric part of the metric y,5 induces Yang-Mills polarization of the
vacuum (see refs. 23 and 24).

In the electromagnetic case (see refs. 18, 19, and 25) [G = U(1)], we
define the electromagnetic polarization tensor of the vacuum M, induced
by the skew-symmetric part of the metric such that

H,;=F,;—47M,, (10.17)
(L“4s is analogous to H,z and H®,; to F.g).
In the classical electrodynamics of continuous media (see ref. 68) or
in nonlinear electrodynamics (see ref. 69) this tensor is usually defined.
Here we can define the tensor M*°,; such that
Lg=Hp—47M"p (10.18)

M?“,; is the Yang-Mills field analogue of the electromagnetic polarization
tensor M,z. It is easy to see that

47TMaaB = :—Kaaﬁ (10.19)
[see equation (6.13)]. Thus, we get a geometrical interpretation of M*“,z,
Q%p(N)=87M",4 (10.20)

(M*“,z is of course the Ad-type tensor defined on P). Thus, the Yang-Mills
field polarization induced by the skew-symmetric part of the metric y,5 is
the torsion in the additional dimensions. This is in very good agreement
with the results from ref. 16. The only difference is that in ref. 16 the
Yang-Mills field polarization has its origin from external sources and (10.20)
plays the role of the Cartan equation in Kaluza-Klein theory with torsion.
The skew-symmetric part of the metric y,p also changes the Yang-Mills
field Lagrangian,

la o a v auy
xYM=—8;[2(g[ PIH ) (" H,,) - L***H",,]  (10.21)

For (10.21) we have a new term
_2hab(g[aB]HaaB)(g[MV]Hh,u,u)
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which is an interaction between the skewon field and the Yang-Mills field.
This term vanishes if the metric of space-time is symmetric and is always
nonnegative if the group G is compact. The second term in (10.21) is also
different than in the classical Yang-Mills field Lagrangian. In place of the
symmetric tensor h,, we have now a nonsymmetric tensor

lab = hab + /-Lkab

The skew-symmetric part of the metric induces also a source for the Yang-
Mills field. In (10.6) we get a current

gauge

1 =
Jo, == (=Bl § h. [ur] gt
2 g ( b& ;LV)

H4

n+2 .
“am 8 WLl — 28" hog™ " H",,)]

1@
=J%+J%(¥) (10.22)
1)

The current J°, vanishes if the metric is symmetric. All of the above new
effects, from the nonsymmetric non-Abelian Jordan-Thiry theory concern-
ing the Yang-Mills field, are also obtained in the nonsymmetric non-Abelian
Kaluza-Klein theory (see ref. 23). If we put p=1 or ¥=0 we get the
nonsymmetric non-Abelian Kaluza-Klein theory (see ref. 23). Now we pass
to new effects which appear because of the scalar field p (or V). The scalar
field propagates according to equation (10.7). This equation is more of the
Klein-Gordon type than the wavetype. We have here a term

—8(n+2)me "I ( Ly —20)

=—8(n+2)m(e "V Ly — eV R(D)) (10.23)
For the electromagnetic case [G = U(1)] we have only one term,
—247e VL, (10.24)

(see ref. 19). From observational data we know that the cosmological
constant is very small (almost zero) and therefore this second term does
not play any important role.

We know that

const
“

for very large p and for this we can sometimes choose [for example, for
G =S0(3)]

Ii(f“)~ or ~const (10.25)

|u|=10" (10.26)
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Thus, we really have only the first term
—8(n+2)me "Ly (10.27)

From observational data we know that the gravitational constant is almost
constant. This means that p =1 or ¥ = 0. Thus, we can expand e MPAY =
1-(n+2)¥+---in (10.27) and leave only the first two terms

—8(n+2)me IV L = -8(n+2)TLym+8(n+2) 7Ly ¥  (10.28)

The term (8(n+2)*7Lvm)¥ plays the role of the mass term for the scalar
field ¥ in equation (10.7). Thus, it seems that the scalar field ¥ is massive.
This statement is also supported by equation (10.16); the trace of the
energy-momentum tensor for ¥ is not zero. Let us turn to the Lagrangian
for the scalar field ¥:

Poeat(¥) = (mg"” + n’g*"gs 50NV W (10.29)

where m= (l[dc]l[dc] ~3n(n—1)) and n=dim G.
It is easy to see that in the electromagnetic case [G = U(1)] we get
m =0 and
Lo W) =85, 87V W, (10.30)

i.e., the same formula as in ref. 19. In this case if the skew-symmetric part
of the metric g, is zero, then the scalar field ¥ does not propagate,

gscal(q,) =0 (1031)
In higher-dimensional theory (higher than 5, n=2) we get
Foca(¥)="3n(n-1)g""¥ ¥ _#0 (10.32)

Thus, we have propagation of the scalar field ¥ in the symmetric non-
Abelian Jordan-Thiry theory. In the nonsymmetric case with I, # I, we
get the same feature as in the electromagnetic case if

m=0 (10.33)
This means that
14 4o =3n(n—1) (10.34)

In this case the scalar field ¥ does not propagate if the skew-symmetric
part of g,, is zero.

Summing up, we get the following statement: the scalar field ¥ is
probably massive. This has many important consequences. First of all ¥ is
of short range and has Yukawa-type behavior

1
‘I’~;e“" (10.35)
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Thus, ¥ does not violate the weak equivalence principle. The scalar force
is of a short range. Thus, in our theory scalar forces connected to the
gravitational constant (K = e¢""*?¥) do not violate the universal fall of all
bodies. Due to the Yukawa-type behavior of ¥, we get that, at long distances,
the gravitational constant K is really constant.

Concluding, we see that the nonsymmetric Jordan-Thiry theory, com-
bining Moffat’s theory and Yang-Mills theory with the scalar field, is
stronger than the classical Jordan-Thiry approach (or the Kaluza-Klein
approach) combining general relativity and a gauge theory.

In the nonsymmetric non-Abelian Jordan-Thiry theory there exist
“interference effects” between the gravitational and gauge fields which are
absent in the classical approach (neglecting the appearance of the cosmo-
logical constant, which is a disadvantage of the theory, though it is possible
to remove it in some approaches; see ref. 10). In the theory we get the
following interference effects.

1. A new term in the Yang-Mills Lagrangian
1 v a o,
_'Z;lab(g[,i ]H ,uw)(g[ ﬁ]HbaB)

2. A change in the classical part of the Yang-Mills field Lagrangian
in replacing h,;, by /.

3. The existence of the Yang-Mills field polarization of the vacuum
M?®,5, which has a geometrical interpretation as a torsion in additional
dimensions.

4. An additional term in the Kerner-Wong equation {the equation of
the motion for a test particle in the gravitational and Yang-Mills fields)

1(q° . o
E(;T) (loag - ldbgl3 )LdﬁyU7
0

where my, is the rest mass of a test particle and g” is its color (isotopic) charge.
5. A new energy-momentum tensor T5;'®° with zero trace.
6. Sources for the Yang-Mills field, the current J*“
7. The existence of a scalar field ¥ (or p) with an interpretation as a

gravitational constant:

K= e——(n+2)\lf

8. The existence of a cosmological constant ® depending on ¥ with
an asymptotic behavior for large u

const
d(p)~e?" P ——  (or ~const)

M
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9. A new term in the equation of motion for a test particle with a scalar

force:
2
_lall g(w)(L)
8mg P2 B

in terms of a scalar field p, or

lall®
_mg< 8) 2y

in terms of a scalar field V. This force has short range, as do the fields ¥
and p.

10. A Lagrangian for the scalar field ¥ and its interaction with the
Yang-Mills field in which the Lagrangian of the Yang-Mills field plays the
role of a mass term for the scalar field.

11. An energy-momentum tensor for the scalar field ¥ with nonzero
trace.

12. Results 10 and 11 suggest that the scalar field ¥ is massive and
has Yukawa-type behavior with short range.

All of these effects vanish if the skew-symmetric part of the metric is
zero. We get classical results from Jordan-Thiry theory in the non-Abelian
case with the propagation of the scalar field ¥ if n=2 (n=dim G) and
with an enormous cosmological constant which has in front a factor depend-
ing on V.

Finally, let us write the full Lagrangian of the theory using CGS units.
One writes

50K 87Gn( 1 B(T
FL=R(W)+2m(An) e(n+2>w$YM+_7Z4_1!(§; fscal(q’)> 44 2 ;2)
(10.36)
where
g 21, z
=T A= = .
he’ agl/Z’ Qg he (10.37)

Note that the Killing-Cartan tensor h is proportional to the Tr tensor
and in general the coefficient is not equal to —1. Thus, we really should
redefine A in such a way that A% A”y, where

h=—vTr

The Tr tensor is commonly used to define the Yang-Mills Lagrangian.
Let us remark at the end of this section that we have three equivalent
forms of the energy-moment tensor for a gauge field in our theory. Let us
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write them down:

gapee(h Lab waeyya b [pvlpy(a b)
o =T, 18878 Lo L® e —2g"" H'" [ LH"
1 auv ¥72% a g
— 7 8l LY H",, —2(2" T H ., ) (g" ]H”W)]} (10.38)
gauge(2) [ab wBra w . 1
ny =—:;;T-{g BL Bvaa,u—zg[ B]H( aBHb)ya—Zg;Lu

aa a a o 1
X[L BLba,B _2(gr E]H aﬁ)(g[‘y ]Hb'yu')]}—i-gj/.tv (1039)

where
Ty =4l (L%, L2, — L, L’ g™ g5,8'")) (10.40)
and

gauge(3)

l
TQB _ ab

{gUBLaHUHa/,LU' _ Zng(a,wa)aB

an
1 auy 14 a T
7 Bl LY H = 2(g" H . ) (8" ]wa)]} (10.41)

It is easy to see that
gauge(1) gauge(2) gauge(3)
g¥ T, =g T,z =g*° T, =0 (10.42)

T%;%*" has been considered in this section an energy-momentum tensor
for a gauge field. They are equivalent modulo equation (4.10) and are
analogous to the three kinds of energy-momentum tensors for an electro-
magnetic field.

Let us define two Ad-type 2-forms with values in the Lie algebra g
(of G),

L=3L%,0"r0"X,
L=3M*°,0"r0"X,
One easily writes ,
L=Q0-47zM=0-1 (10.43)
where
Q=3Q°,.,0"r0"X, (10.44)

Equations (10.43)-(10.44) give a geometrical interpretation of the form L,
i.e., a Yang-Mills induction 2-form in terms of the curvature and torsion
in additional dimensions (gauge dimensions). This is similar to ref. 18.
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Let us consider equation (10.14a) in a three-dimensional notation. One
gets similarly
(aJly+14A) - D+ 14, (VxHY) =21,A-E?
(bJly+ 1K) D=1, (WxH?) =2bl ,E* =21, WxB¢  (10.45)
(Vlg —Ql)D? =21,V - E*
and
(K * H ~1,,A* H)+(,W®D* - [, U® D)
=21 4,K * F*+21 ,WR®E? (10.46)
where for W, U, V, Q, a, b, K, and A we have the following notations:

a=(g""¢" s, b=(g'g i
V=((g"¢ ), ¢=1,2,3
W=((g 'g")a), a=1,2,3
U=((g"g ")sa), b=1,2,3
Q=((g7'g ), c=1,2,3

AT:((nggl)&E)’ 6,621, 293
Kz((g-lgT)El;)’ E} 5:23 3:4

and * means matrix multiplication in three-dimensional space, ® means
the tensor product of three-dimensional vectors, - means scalar product in
three-dimensional Euclidean space, and AE means the action of a 3 x 33
matrix on a three-dimensional vector. For the remaining symbols we have

Ed :(Edé)z(deié)’ d=192a3

D¢ = (D) =(L%,), a=1,2,3 (10.47)

F'=(H";) = (essBY) =—(F")* (10.48)
and

B =(B") = (3¢, B%) (10.48a)

H? = (Hds‘) = (%Erﬁﬁs‘Ldﬁtﬁ

In this way we lose the covariance of (10.14a), but we get the relations
between three-dimensional vectors (E% BY) and (D? HY) as in an
anisotropic Yang-Mills dielectric medium.

Let us suppose that DY =0 and E # 0. One gets

V-E‘=0 (10.49)
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ie,E? LV and

V-HY=2A-.E (10.50)
L.(WxH?) =2l,(bE? ~W xB%) (10.51)
(LK *H—1L,,Ax H) =21 ,(K * F*+W®E?) (10.52)

Equations (10.49)-(10.52) can be considered the consistency equations for
a dielectric confinement solution of the field equations, i.e., DY =0 and
E? # 0 (nonzero electric field and zero color-charge distribution). Moreover,
in our theory there is a different tensor L, i.e.,

Lo = gPrgr?, (10.53)

and this tensor enters the second pair of Yang-Mills equations in our theory
[see equation (10.6)]. Thus, we can connect vectors D and H? to this tensor,

D = (D)= (L%)
HY = (Hds-) - (%sfrﬁﬁLdﬁlﬁ)
In this case we should rewrite equation (10.14) in terms of L”. One gets
lac8up8apL ™" + leaBuo8  81p80, L™ = 21ugus8” H%,  (10.54)
One gets
(2 ldcg44g[m4] + lcdg48g67(gy4g4ﬁl - g44g'yﬁ|))an'1
+ (ldcgugn-m - lcdg47g48g67gyrﬁ)Hdn“1?
=—21.48458“E*; (10.55)
(Lac(8asginb — 8a58am) + lea (g45gaygy4g5m - g48g5ygyr71g54))Ddﬁl
+ (Liemb8ar + lcdg,;,;,g‘wga’gy;) I'_Idmf
=21y (g4sgaaﬁdl§a_g4aga45d5) (10.56)
(Lye(@magaa — 8aa8am) + La (8448'&6867&”?1 + gaagﬁygwgztm))Ddﬁ.
+ (Lyc8nagar+ lcdg4n‘1gﬁ6g87g'yf)gdﬁﬁ
= 21,88 E% (10.57)
(Lic(8r58aa— 8458ar) T La (gasgaygwgﬁf - g&sgaygyngE))Ddf
+ (ly8n5gart lcdgasgaygngErﬁ)ﬁdnw

=2Ly(8as8 " E 5+ 258" F ) (10.58)

Supposing D =0 (D% =0), one gets
(lac8a78ma— lcdgugmg&’g’;m)ﬁdm =—21,48458E 4 (10.59)
(lac8m58ar+ lcdgErﬁg&Bgaygyf)Hde =2y (g4ag55ﬁd55 - g45g64E dE) (10.60)
(Lic@ma8art loa8amBas) H e = 2148 258 E (10.61)

(ldcgtﬁEg&F+ lcdg4rﬁgd8g5yg'yf)ﬁdﬁlf =2y (gaagMEdE“*' gaagafﬁd'e) (10.62)
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Moreover, we should mention that a separation into space and time com-
ponents of g,z, H d#,,, Ld#,,, and L% is possible only if we deal with the
stationary case. We suppose this in order to have a physical interpretation
of the condition D% = 0. Otherwise, our considerations have a purely formal
character.

Equations (10.59)-(10.62) should be considered the consistency condi-
tions for D, =0. Thus, we can treat them as equations not only for H%,.,,
but also for g4, g4, Zns under stationary conditions (the same conditions
for H%;., E:, F%5). Thus, the dielectric confinement solution of the field
equations can be derived from the second possibility, i.e., for D obtained
from L. A stationary space-time determines a three-dimensional manifold
2; defined by the smooth map ®: E - 2,, where ®(x) denotes the trajectory
of the timelike Killing vector 7. The elements of X, are orbits of the
one-dimensional group of motions generated by 7. The 3-space X, is called
the quotient space E/G,. There is a one-to-one correspondence between
tensor fields on 23 and tensors on E, T satisfying #*7," =7, T, =2,;T,”",
where 7, =g(..,1". In our case we have on X, the followmg tensors
Ry = 8 +(~8.7“%")"?#,7, and an appropriate tensor built from g,,,,
(% =9/3x"). The action of the group G, can be lifted to the bundle P and
we get Lw=2y=2,0=2 0", where n=7"7. In our case we need a
stationary condition for L%,,, H®,,, L**". This can be defined on the bundle
P, R,L°, =8 H, =8%"=0, because L*,,, H®,, are defined on P, not
on E. In order to consider these conditions on E, we should take a local
section e of P and define a homomorphism o: G,~ G such that

F(MFe,,=U%(ac(h™))F®,, (10.63)

and the same for B%,, = e*L%,,, A" = ¢*L*", where F°,, =e*H*,,, and
7* means the action of the group G, lifted to the bundle P. It seems, however,
that the best choice is to consider tensors on a space X,,, similarly as
tensors on 2. In this way equations (10.55)~(10.62) have a correct meaning
on X;,,. The 2;,, is a smooth manifold of orbits of the one-dimensioned
group G, generated by #*n = 7. In the case of the static field configuration
there is a natural way of introducing subspaces P, (orthogonal to the
Killing trajectories).

11. SPECIAL CASES

Let us consider some special cases of the theory. First of all let g,z be
symmetric and [, # I,,. In this case we are able to solve equation (10.14)
and we get

L%, =h*l,H, (11.1)
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The Yang-Mills Lagrangian takes the form
1
PLym = —g‘;[hbd +,U«2kcbkcd)waHdw (11-2)

where k°; = h“k,,. Let us suppose that I, = h,, and g.g # gg... In this case
we have :

1
Lom= ~%n ha,(2QHH® ~ L*“"H",,) (11.3)
ra

where H*=g"* H*,, and the relationship between L°,; and H",; is
gMBgWLLaya + ga;LgMyLaﬁy = 2gaugM7HaB7 (1 14)

Now there is no mixing in the gauge indices (no mixing of ““color charges™).
In the first special case we are able to calculate the polarization tensor M“,,
and we get

a 1 a ac
M aB=E(6 a—h cd)HdozB (11~5)

In the first case we are able to make the cosmological constant as small as
we need. In the second case we get the classical result with enormous
cosmological constant. Let us notice that this case corresponds to the
situation with w =0 or to the case I, = h,, mentioned in Section 3. If
G=U(1), we get

1
36m=§7;[2(g[“”F,w)2*H’”F,w] (11.6)

where
2.68 "H o+ 8.,.8""Hg, =28,.8" Fp, (11.7)

and we do not obtain the cosmological constant [U(1) is Abelian].
Let us come back to the Lagrangian (11.2) and let us substitute

kab:CCach (118)
from Section 2. One gets
1 2 ” VHZ) b d 1 :’-"2 b d
=— |14+ u>—Vh H*'H? +— —V,H*VH?,, (119
Lym 877'(1 M n—1 bd " 8 n—1 b dft ( )

where

| VI?=~haV*V® =const>0
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is a square of the norm of the vector V. Thus, we get the sum of the usual
Yang-Mills Lagrangian (except the factor in front) and a new term
2

“_I V,H" V,H",, (11.10)

Let us now consider the first term in equation (11.9) for G = SO(3).
Thus, one gets

202 5 ,
~Z (1+ ) Te(H*"H,,) (11.11)
8
Moreover, in any gauge e (a local section) one finds
o =2 AT GhX 11.12
e*w ="~ A" X, (11.12)
where g is a coupling constant. For the generators X, in an adjoint
representation (Adg) we use the following normalization condition:

Tr({X,, Xp}) =28,,, where {-, -} means an anticommutator of matrices.
Thus, for the strength of the Yang-Mills field one derives

e*H,, -% F,, (11.13)
where
F,w=aMA,—a,,AM+%‘—gE[AH,A,,] (11.14)
Formula (11.11) can be rewritten
81 thgz (1+p*) Tr(F*"F,,) (11.15)
Moreover, we should get a factor 87#Gy/ c*. Thus, one finally finds
A =2l ! (11.16)

[ag(1+ 7]

where Ip; = (#Gy/c’)"/? is Planck’s length and o, =g /hc is a dimensionless
coupling constant for the Yang-Mills field.

12. LINEARIZATION OF THE NONSYMMETRIC NON-ABELIAN
KALUZA-KLEIN THEORY

Let us consider (10.14) and rewrite it in a more convenient form,
Idc(SyB - 2g[35]g75)Ldya +1.4(8%, — 2g[aa]g8y)Ld;3y
= 2(87a - 2g[5a]g8Y)HdBylcd (121)
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In this section we will use a different notation for a Killing-Cartan
tensor on the group G, i.e., P,, in the place of h,.

Let us expand L%, into a power series with respect to Aoz = gop — Nugp,
where 7,4 is a Minkowski tensor

d (O)d (l)d (Z)d
L4, = L%, + L% + L%+ (12.2)

Using the formulas
1 2
848 = (" + R+ B+ ) (0o + by ) = 87
1
W = —n”an"ﬁhpa

B = 0P .

g = n;w — ﬂ“aﬂpﬂhpa + n;w v aﬁhmhm P

one gets up to the second order
lchdBnr + lchdﬁcx =2(n - 775077 BThTO' +n7"n > 1" hophe.)
X (hppoylacL® o+ B yeileal “g5)
=20, yH o — by sarlaH g,

X (0% =" hoet 7700 o h,,) (12.3)

One easily finds

(0)
Laﬁa _'P blbcH Ba H Ba +,U~P kbcH Ba (12-4)

(1}
Laﬁa = 776 Pac bdlbe(h[ﬁa]lcdH B'y+h[35]ldc 'ya)

=2k 500" “‘lH" 5y (12.5)
or
M
Laﬁa = (8% —szabkbcpaikde)nys(h[ﬁﬁ]Heya - h[ms]HeyB) (12.6)
@) B
L%e =10 hyry (ks k2 ) (BrapiH ap — hips1H oa)
+Mn75n”’(k k2 )P ke
X (Mg ey H “ap = Byeihips H oo + 2hipribsa) H ) (12.7)
where

P Per =87, (12.8)
kip=08%+up“ky (12.8a)
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Using equation (11.8), one easily derives that

2 V 2 2
kibk'ic=(1+“ vl )ag+ £ yay
1 n—1

Let us consider the Lagrangian for the Yang-Milis field in the nonsymmetric
non-Abelian Kaluza-Klein theory. We have [see equation (10.21)]

1 o, a v
$YM=§7;[_2pab(g[ PIH aB)(g[M ]Hb,w)

+ (pab + I‘Lkab)ga“gBVLaaBHby.V] (12'9)
Let us expand (12.9) into a power series with respect to h,, = g,., — M.,

0 ) @
Lym= Lyt Lyt Lymt+e o (12.10)

Using (12.9) and (12.4)-(12.7), one gets after some calculations

(0)
81TﬁfYM = (pcb +l~"2kcrprs' sb)HCByHb,u.anB“nya (1211)

<1>
87 Lym=—2(Pap + ko) 0P 0 0 [y  H g H

+ (I.LparkYS)(h(ﬂT) + h[T‘T])HSﬁfyHb}La
+ 1P Ky P K gt H o g H ] (12.12)

(2)
87T$YM = (ptlb + ,u’kab)HSB'yHby,ah'ro'hBE

x{[2(nP* 0" "0 *) + 0P n*? 1k,

+ (nso'n;LTn'yanB.S _ nSUn;LTn yanBe

+ 07"y " 0P — > )

X (k$,kL) +5(n ™0™ 0Py + " Py®
=007 0Py — 0T Py ) (kS kL)
(=00 n %y + gy Ty Py

+ 07 0 P — ™y " P (kS kL) pPK,
T (PP TEn — Yo7y g

7+ 0Py ) (k) prik,s
poar Be_ vy nr, oo, Be,  y3

1 &
—2(n* 00 - "%y
— "I T i+ T POy )8, } (12.13)

_ nvenfﬁnfm
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In the first order of approximation in h,, = g,, — 7,., one gets

1 rs c o
$YM = g; (pcb + /'szcrh sb)H B‘yflb/.wx’nﬁ”'n7
1 2 rs Bo__puT__ya a b
_Z; (Pab tu ka.h sb)n nn h(‘rD')H BVH po

Ko ar s K
+2‘;h krs(pab+/"’kab)(6 p+/1‘p 4 qp)

X TIBUW’”‘U yah[fa]HpﬁyHb;La- (12.14)

It is easy to see that the last term in equation (12.14) gives a skewon-gluon
coupling in the first order of approximation. If u =0, this term vanishes
and there is no skewon-gluon coupling up to the first order of approxima-
tion. If u # 0 and k,, # 0 we get skewon-gluon interactions in the first order
of approximation.

We can find interactions between gluons and gravitons. This is similar
to the usual case except for a factor in front [see the first term in (12.15)]

l a ar a T (4 5
$YM=—47T [(pab+f1’kab)(5 s+:u’p krs)nB 7]# 77‘}/ h(‘—o-)H ﬁyHb,u,a
B (pas+ theas) PP Ko (8%, + up*hyy)

py Dab T MKap) D Kps (O p TP "Kgp

x nPn*y V“h[m]H"ﬁywa] (12.15)

The skewon-gluon terms are proportional to u. They are given by the case
of coupling an antisymmetric tensor to the Yang-Mills field. The gluon
propagator can be given by the zeroth-order term in the Lagrangian,

©) 1
$YM:§;(pcb+/'L2kcrpm sb)nB#n‘ychﬁvaua (12.16)

This differs from the usual case by a factor in front. In the nonsymmetric
non-Abelian Kaluza-Klein theory the constant u is connected to the cosmo-
logical constant. Thus, we get a connection between the skewon-gluon
interaction and the cosmological constant. In the case of G = SO(3) we get
in Section 7 that for s = wo=—5.667 - - - the cosmological constant vanishes.
Thus, we get a coupling constant of the skewon-gluon interaction for
G=SO0(3)=SU(2). We can choose |u|>10""". In this case the skewon-
gluon interaction is very strong. We also have a solution for other compact,
simple Lie groups, dim G >4 (see Section 7).
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Let us pass to the Lagrangian for the scalar field in our theory,
Lecal(¥) = (g™ +n’g g, g0 W (12.17)
This field is uncharged. Let us expand Z,.,(¥) into a power series with
respect to h,, = g.., — N,.. One gets
(0 (1) @

gscalz gsca]+$scal+$scal+' ot (12.18)
where
(0)
Loea(¥)=mn**¥ U, (12.19)
(1)
Local(¥) = =(mn**nPhp )V ¥, (12.20)

2)
&
scal(q’) - [mnw ° Bh(B')’)h(D“S)

+ n2(na[0nu]BnpvhBah(w)
_l_na[Mnu]ﬁT’thBahsy)]\P \Ij (12 21)

Now we have a nonvanishing L9 (¥) and the field ¥ propagates even if
the skew-symmetric part of g, vanishes, i.e., h,g7=0. This is different than
in the electromagnetic case. Let us suppose that the field ¥ is weak:

|P|« 1 (12.22)
One easily gets
ey (neaye+ P g (1233)
and
Y 1y (n4 2y 2 22) 24 (12.24)

The field ¥ is the scalar field connected to the gravitational constant. Thus,
¥ is the scalar part of the gravitational field. Our approximation presented
here is the approximation up to the second order with respect to h,, =
8ur — My, and P, In this way one easily gets for the Lagrangian in the
nonsymmetric non-Abelian Jordan-Thiry theory (except for the Lagrangian
of the pure gravitational field from NGT)
(0) ) @
87F =87 (Lym+ Lym+ Lym)
(0) M )
+ (gscal = gscal + gscal_*_ yscal)
©) )
- (n+2)‘1'[877($YM+ Lym) — R(F)]

("+2) (112) gy g Pon + R(EY) (12.25)
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It is easy to see that in this approximation we get the masslike term for the
field ¥

4 ;2) V(8 Py + R(T)) (12.26)

and an interaction term

—(n+2)1I'[8'rr(?ZZYM+ (EZZYM) R(D)] (12.27)

The last expression (12.27) can be treated as the interaction of the field ¥
with source, i.e.,

v (12.28)

where

J=—(n +2)[87T((§YM+ (SEYM) R(D)] (12.29)

is an external source for the field . In the first order of approximation in
hy. = gu» — Mu, and ¥ one gets

87 = (hoy+ ko h k) H 5 H om0 ™
- 2(hab + /'szarh i sb)")ﬁun nyah(fcr)HaByHb#a
+2uh ks (B + ko )(8°, + ph™k,,)
X 0P 0 0 o1 H gy H
+m(n** =9 9Phpa) -V, ¥,
—(n+2)¥[(hey, + pkoh k) H s, HO om0 = R(1)]  (12.30)

i.e., we get an interaction term for the field ¥ and hg, enters into the kinetic
term for . We have a skewon interaction with the field ¥ and with the
Yang-Mills field in the second order of expansion. The field ¥ interacts
with the Yang-Mills field due to the pseudo-mass term. Despite this the
field ¥ is uncharged. The propagator of the field ¥ is as usual apart from
the factor

:l[dc]l[dc]":;n(n_l) (12.31)
This field does not propagate to first order if
m=0 (12.32)

Let us remark on the convergence of the series appearing here. They
are power series with respect to h,, and they converge for sufficiently small
h,.. However, all of the functions of h,, considered here (ie., g, L°,,,
Pym) are well defined for any h,,. They are rational functions of this
variable. Moreover, the exact form of these functions is hard to get.
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In this section we found the linear version of the nonsymmetric Jordan-
Thiry theory (see refs. 28 and 29). We found the Lagrangian up to the
second order of approximation with respect to the gravitational field in this
theory. We recall that in the electromagnetic case we found that the scalar
field ¥ does not propagate in the first order of approximation. Due to this
we find that there is no scalar (monopole) radiation to this order. Simul-
taneously, one concludes that in the first order of approximation the theory
has nonvarying effective gravitational constant. This means that the variation
of the gravitational constant is at least an effect of the second order in this
theory.

In the general non-Abelian case we find that in the first order of
approximation the scalar field propagates and couples only to the symmetric
part of the metric. Due to this we find that the scalar field propagates in
the first order of approximation. However, this field couples to the cosmo-
logical constant and to the Lagrangian for the Yang-Mills field. Thus, it
seems that this field is massive (pseudo-mass terms). Simultaneously, the
trace of an energy-momentum tensor for this field is not zero. This indicates
that this field is massive and has Yukawa-type behavior. Thus, it seems that
there is no long-range radiation connected with the scalarons, which are
massive. In order to prove this, it is necessary to find an exact solution of
the field equations in the spherical, static case (similarly as for the Kaluza-
Klein theory; see ref. 30) with Yukawa-type behavior for the field V.
Unfortunately, such a solution is unknown.

It is easy to answer what the spin content of the theory is (in the linear
approximation). In the electromagnetic case it is (2,0, 1)—a graviton, a
skewon, a photon, no scalaron (see ref. 29). In the non-Abelian case

(2,0,1,1,...,1,0)
o Y
n times

i.e., a graviton, a skewon, n gauge bosons (n gluons, intermediate bosons),
and a scalaron. It is interesting to consider in more detail the interaction
between the skewon field and the gauge boson (gluon, intermediate boson)
field. This is an interaction between the generalized Maxwell field k;,,,; and
the non-Abelian gauge field. In the linear approximation of NGT, k.,
enters the theory via its strength F,,, =,k .7y carrying a zero spin. For
the Abelian gauge field, hy,,; is connected to the Kalb-Ramond string field
(see ref. 66). It would be interesting to examine this interaction as a
possibility for confinement for gluons in the case G=SU(3). It is also
interesting to examine this term in the context of string theory, or even
superstrings.

Let us consider the Lagrangian for the scalar field in the electromagnetic
case (five-dimensional) (see ref. 29). For the spherically symmetric solution
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in the nonsymmetric Kaluza-Klein theory of gravitation we have that

lZ
g[’4]=72- (12.33)
where I° is a constant proportional to fermion number in Moffat’s theory
of gravitation. The other components of g'**! are zero; thus, the constant
(I/1p)” in this particular case plays the role of a coupling constant between
scalarons and the metric, Iy being the Planck length

Gvh\'?
()
C

This is similar to Brans-Dicke theory, where we have a constant o (see
refs. 93 and 94). Now (I/Ip)? plays a similar role to w in the nonsymmetric
Jordan-Thiry theory. If I” =0, the scalar field ¥ really disappears, similarly
as for w =0 in the Brans-Dicke theory. However, the experimental predic-
tions of NGT theory are very different from those in Brans-Dicke theory
(see refs. 65 and 79).

The last question which we can pose here is the problem of ghosts and
tachyons in the nonsymmetric Jordan-Thiry theory. We know that the real
version of the nonsymmetric theory of gravitation avoids ghosts and tachy-
ons (see refs. 108 and 109). In the linear version of the nonsymmetric
Jordan-Thiry theory (the Lagrangian is quadratic with respect to all fields)
we have no ghosts and tachyons in the particle spectrum of gravitons,
skewons, or gauge bosons. The only problem is the scalar field ¥. In the
electromagnetic case this field disappears in the zeroth order of approxima-
tion. Thus, the five-dimensional electromagnetic case avoids ghosts and
tachyons. In the (n+4)-dimensional case we have in zeroth order of approxi-
mation the Lagrangian for the field ¥. In front of this Lagrangian we have
the constant m. If this constant is positive, m > 0, the theory avoids ghosts.
Otherwise it possesses a particle with a negative kinetic energy. Thus, we
have a condition

14y > 3n(n—1) (12.34)

and if (12.34) is satisfied, the theory is completely ghost-free. The condition
(12.34) can be rewritten

1°°(e)l,, < n(7—6n) (12.34)
Using equations (7.54)-(7.58), one gets for n>4

5 1—pd _
El —————1 ot <n(7—6n) (12.34b)
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This inequality can be easily satisfied. Let £ <0 and let u be such that for
i=1i, one has 1+pu{, = ¢ In this case one obtains

Lol—pud;
%
i=1 1+ pud;

iy

2
+——1<n(7—6n)
€

If | is sufficiently small, our condition is satisfied and 1+ uf; # 0. Moreover,
we need w to be a root of ®(u).

Thus, this condition can be treated as a criterion for a gauge group
choice. For example, for G = SO(3) we get

-2(36+7u?)

m(SOG) ==

<0

Thus, we should reject SO(3). We can avoid tachyons if the masslike term
is nonpositive, 1.¢.,

> R()=o0 (12.35)
This is also a criterion for a gauge group G.

It is easy to see that the mass of the scalar field ¥ in a linear approxima-
tion is

in n+2 _R~(f) /2
My = NG (Mkdcl[dd‘3n(n_1)> mp =0 (12.36) .

ch)l/2
mm—(‘é;

where

tot

is the Planck mass. The total mass of the scalar field MY' is not equal to
MY (nonlinear interaction with remaining fields, i.e., gauge fields) and it
can be found from the Yukawa behavior of the static, spherically symmetric
solution of the full field equation, which we mentioned before. In Section
7 one finds that for large u, R(I') behaves like

R(D) e (12.37)
o

where C is a constant. Thus, we get from equation (12.36)

. Mg n+2 -C 12
Ml1n~ Pl < )
Vel V2 \pkg M =3n(n—1) (12.38)

According to (12.35), the constant C should be nonpositive, C <0.
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Finally, let us remark that in the linear approximation of the Lagrangian
for the scalar field ¥ we can redefine

1
Vo (12.39)

N

In this way we will be dealing with the usual Lagrangian for a scalar field.

13. GEODETIC EQUATIONS IN LINEAR APPROXIMATION

Let us consider a generalized Kerner-Wong equation in the special
case p=1,

Du® ¢° q" o o

dr _r_n;lbdg BHdﬁv”v+;1—;(Pbdg[ Pl pkpag' B))Ldﬁv”y=0 (13.1)
d b
dq°_
dr

where ¢” is the color (isotopic) charge of a test particle and m, its mass.
Here, as in Section 4.10, we are using a different notation for the Killing-
Cartan tensor, i.e., p,, in place of h,,. Using (12.6), one easily writes (13.1)
up to the first order of approximation with respect to h,,, = g,., — ..,
N, , & b b
Du 4 lpa(n*f - n""nBThm)HdByu’ - pkoam Pu¥
dr  my, my,

X [PdelechBy + (6de - “deckce)naﬁ(h[BB]Hcay - h['yS]Hcch)] (13'2)

where
kd(‘:pdapCbkab (13'3)

Let us consider the Kerner-Wong equation in the general case for
¥ # 0 (and not constant).
We have one more term

”q”2 ~(aB) 2 ”4”2 ~( B)( 1)
— 11 gta 0 - gleP — 13.4
4m} T & 0’/ s (13.4)

in terms of the field p, and
lql*=(—pag"q®) (13.5)

llg||* is the norm of the color (isotopic) charge. One easily writes (13.4) up
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to the first order of approximation with respect to h,, =g,, —n,, and ¥,
ﬁua qb qb
. B _ e BTh YHY uY — 2 ik, m®Pu”
dr  mg ba (M n ) By mo,u bd]

X [hdelecHCB'y + (ade - “‘zkdckce)nas(h[BS]Hco"y - h['ya]Hccrﬁ)]

_“‘1”2\1, ( aB __ a(p V)ﬁh )_0 (136)
4mj A0 T el '

It is easy to see that the skewon field k., has an influence on the motion
of a test particle (13.2) and (13.6). The scalar field also has an influence on
the motion in the linear approximation (13.6).

14. EQUATIONS OF MOTION FOR A TEST PARTICLE AND
GEODETIC DEVIATION EQUATIONS

Let us come back to equation (4.13) and consider it for p =1 (¥ =0).
One gets

Du* g° 1
: +q—[lcdg"‘stBs——(lcdg”‘s—ldcga“)LdBS:IuB=0 (14.1)
T my 2

[e
q
——=const
my

Due to the compatibility condition (4.7) we have (see refs. 43 and 72) the
first integral of motion

y(u(7), u(7)) = yap,u?(r)u®(r) = const (14.2)
or
Zapy*(T)uP (1) + hypu“u® = const (14.3)
Moreover, due to the second of equations (14.1), we have
hapu®u® = const (14.4)
Thus, we get
y(hor(u(r)), hor(u(r))) = g.eu” (7)u’ () = const (14.5)
We consider only const = 0, because otherwise we get unphysical worldlines.

Let us rewrite (14.1) in the following form:

mea® + chaslcduﬂHdﬁa _gz‘ (lcalgmS - Idcgaa )Ldﬁauﬁ =0 (14.6)
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where
b
q
2ub =2~ .
u e (14.7)
and
a"——~D"a~2(dxa) (148
dr  dr\ dr -8)

is the covariant 4-acceleration of a test particle. Let us consider an initial
Cauchy problem for (14.7) such that

x%(7o) = x5

dx”
dr

(7o) = ug (14.9)

gaﬁuguoﬁ = ]-

i.e., we consider timelike worldlines. Moreover, we can proceed in the same
way with null lines. In this case we should put my=¢q”=0 and u® can
have an interpretation as a coupling between a gauge field and a particle
(i.e., a gluon).

Due to equation (14.5) we have for every 7= 7,

dx® _dxP
gaB—d_;(T)";(T)"l (14.10)

We give an interpretation of the additional term for the non-Abelian Lorentz-
like force in equation (14.6), i.e.,

_%_[lcdgaﬁ—ldcgsa)[’dﬁauﬁ (1411)

To do this, let us consider equation (14.6) without this term, i.e.,
moa® +q°g*°LuPH%s =0 (14.12)

This equation is a simple generalization of the equation of motion for a
point charged particle (Kerner-Wong equation), known in symmetric non-
Abelian Kaluza-Kiein theory, to the nonsymmetric case. Now g*” is not
symmetric and the covariant 4-acceleration is defined in terms of the connec-
tion @z on E. This connection is of course compatible with the non-
symmetric metric g.,. One easily checks that

d dx® dx” e asr vrd (dxﬁ>(dx">
d’r(g(”m dr d7>—2q 8va8  leaH sp dr dr #0 (14.13)
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Thus, in general, equation (4.12) does not have the first integral of
motion (14.5). This means that we are unable in general to preserve the
initial normalization for the 4-velocity of a test particle. If we want to have
the normalization (14.10), we should add to (14.12) the auxiliary condition

d(u*)=0 (14.14)
where
O (u®) = grupuuf —1 (14.15)
For a null line we have
D (u) =g puuf =0
and
a*+u‘g®® C,,,uﬁHd[m =0

The auxiliary condition (14.15) is a nonholonomic constraint. This constraint
is nonintegrable and nonlinear (quadratic in velocities). According to the
general theory of mechanical systems with constraints, we know that in
such systems we have the so-called reaction forces of constraints. Thus, we
should write equation (14.12) in the following form:

moa® = —2u‘g*’LuPH5 + Q* (14.16)
D(u*)=g,gu’u’ —1=0 (14.17)

Q” is a reaction force of the constraint (14.17). The force Q° must be such
that (14.17) is automatically satisfied during a motion. Let us find this force.
In order to do this, let us multiply both sides of (14.16) by g(c,,s)u’3 and
integrate from 7, to 7. One gets

3 me®(u™) =3 m(gapuuf ~1)
= JT (8iap Q% =2moU UG 0p)g L au’H" 5) dr =0 (14.18)
70
For (4.17) satisfied, we get
JT (8apy 4 Q% —2mou‘u"g( 08" lau®H 5) dr =0 (14.19)
Moreover, equation (14.19) is satisfied for every 7= 7,. Thus, we get

Bapy U’ QY = 2mou U 0p,g **LauPH s =0 (14.20)
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It is easy to see that equation (14.20) has the solution
Q% =2mglu‘u"g**H 5 (14.21)
If we put (14.21) into (14.16), we get
mea® =0 (14.22)

This solution has a simple physical interpretation. Equation (14.22) is an
equation of motion for an uncharged test particle. There is no Lorentz force.
It corresponds to a choice u® =0 or equivalently ¢° =0. Let us come back
to equation (14.20) and transform it using condition (4.10). One gets

%gaBuBQa +%gﬂauBQ“1 _ moucu’yuﬁLdya
X (lagpa8” ~ lic8apg”*) =0 (14.23)
Equation (14.23) has the solution

Q" =~ [lug™ ~ lug™) Lpou” (1424)

Thus, equation (14.24) gives us an interpretation for an additional term for
a non-Abelian Lorentz force in equation (14.1) or equation (14.6). This
additional term is a reaction force of the nonintegrable, nonholonomic,
nonlinear constraints. It is easy to see that our constraints are nonideal, for
Q“ is not proportional to a gradient of ®. The constraints seem to be similar
to the so-called servo-constraints. For a nonholonomic (nonintegrable)
constraint we have the following statement: A variational problem with
differential (nonintegrable, nonholonomic) constraints cannot be reduced
to a form where the variation of a certain quantity (an action) is put equal
to zero. This is true in the much simpler case of linear nonholonomic
constraints (ref. 73). Thus, unfortunately, we cannot formulate a principle
of minimal action for equation (14.1). Moreover, we are still able to interpret
the additional term in the non-Abelian Lorentz force as a reaction force of
the nonholonomic constraints (14.17). Moreover, the force Q“ is absorbed
by a geometry (it is geometrized). For a null line we proceed similarly.
However, one can try to formulate a local Gauss-like principle in order to
derive equation (14.1). Thus, let us consider a local Gauss-like principle
for this equation,

8Z°=0
modulo constraints (14.15), where

z2 Mo ~(aﬁ)fay(a7_£1)fm (au _ﬁ)
m

2 0 my
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The matrix f, is defined as follows:

¢ fr qc
fpfS 2m0

f{p = g(pa)f—gaa faB : f_a-y = 5’37, det(f—aﬁ) 7 0

Thus, f exists only if the matrix b°; is invertible and positively defined. In
this case we are able to formulate a Gauss-like local principle for (14.1).
Taking the variation of Z* and constraints with respect to a* (a covariant
acceleration with respect to the connection I_“’By on E), one gets

F ¥ g (moa” = F") + 26 *g  F 8y = 0

where r is a Lagrange multipler. Using the definition of the matrix fQB, we
get equation (14.1) and r=—3.

Let us calculate an acceleration function (an analogue of an acceleration
energy) in this case. One gets S=1im,g'“?’f,,fs.a”a*. The other form of
our equation is

(lcdg{5 - gsgldc)LdSB = bgﬁ

S = o
P azFa+Ra=g(aB)(FB+RB)
a

where R, is an ideal reaction force and 1:“,1 is an external force, and
Fe =f_uaf_“va — qu"’uBf'“ylcdgaﬁHdBauB

Let us find the form of $**, which is an inverse tensor of S,z. One gets

a m rFéarf qE ~(Sa 3

5 270 OV A el =y g°(1.ug™" ~1,.8"7) - L5 = 8
where §7S,,, = 87,. Thus, we can reformulate a satisfactory condition of
the application of our Gauss-like principle:

1. det(S™)#0.
2. 87 =8,
3. S is positively defined.

Note that sometimes in theoretical mechanics one gets in the case of
nonlinear, nonholonomic constraints a wrong equation from the Gauss
principle, even though this principle is applicable for nonlinear, non-
holonomic constraints. We mean here a well-known example given by Appel
and Hamel. Thus, the formulation of a Gauss-like local principle with
nonideal reaction forces seems to be rather unexpected, even under some
conditions. Let us recall that this example is connected to a motion in an
extremal situation (a parameter 5~ 0) and the constraints are quadratic in
velocities (see ref. 123). The model with nonlinear constraints for the
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Appel-Hamel system is incorrect. Thus, we should be really very satisfied
that in our case we get correct results (a correct equation of motion), even
the reaction force is nonideal. Summing up, we conclude that we are able
to get an equation of motion for a test particle in N°’AK>T from a Gauss-like
principle with nonlinear constraints, which is not commonly possible even
in theoretical mechanics. We rewrite the satisfactory conditions for the
applications of the Gauss-like local principle for equation (14.1):

1. The matrix b,; is positively defined and invertible, det(b,g) # 0,
where

q° 1
baB = E‘ (Mkchdap +5 (Lag lagag —lig E;gga )L”a,g)

2. b,p = bg,.
The force F“ is as follows:
F® = q°g*°l..H"g5u”

During a motion the quantity Z> is minimalized modulo nonlinear, non-
holonomic constraints (14.17).

The constraints are nonideal and the force Q° is a nonideal reaction
force. The nonideal reaction force can be expressed by the ideal reaction
force R =ro®/du, = ru®, r#0,

Q*=yP*%R", ¢ #0
Pe _q_c l «d l Sar
B~ 7 [cdg — a8 )Ld&;

Let us consider the more general case of geodetic equations where
p # const. We have

Du* (q° 1
—_—t = B adyyd ——(1 th__lCSaLd ]
dr (mo)u [lcdg Hﬁa 2(cdg 48°") B3
“q”2 o ( 3)( 1)
———=g"—=] =0 (14.25)
8mj P’/ s
1 _ const (14.25)
my

where ||g]| = (—h.q°q”)"/? is a length of color (isotopic) charge in the Lie

algebra g of the group G.
Let us find similarly as in the electromagnetic case the physical inter-

pretation of the additional term

Ll gy 1
1 Ilqli 50 ><,2) (14.27)
8 mg P /g
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This term describes the scalar, velocity-indpendent force acting on the test
particle. The force depends on the “chemical composition™ of the particle,
because it has in front the factor (| q||/ mo)*. Thus, it could be considered
as a new type of force, maybe the “fifth force” (see refs. 54, 55, and 96-102).
Let us multiply both sides of equation (14.25) by g(., u in order to under-
stand the effect of an action of the scalar force on the test particle motion.
One easily gets

d dx* ax”\ 1|q|* d (1)
— — === 14.28
m("’”g(“‘” dr d7> 8 my dr\p’ (1428)
where
. ax°
T
and
)= (G),
Zl=Y=(=) 4
d’r p2 p2 s
or
Glapy U’ — lal” = const (14.28a)
8m02p2

which is a first integral of motion.
Let us suppose that H?,, =0 and (of course) L?,, =0. It is very well
known that
dx® dx®
mOg(aB)—d? EZEP (14.29)

has been considered the energy of a test particle in a rest frame. Thus, the
scalar force is changing the rest energy of a test particle in the following way:

dE, _|ql’ d (4)
e e b 4.
dr  8mg dr\p’ (14.30)
Equation (14.30) gives the first integral of motion
B L1 -~ 1431
» 8m0p2_cons (14.31)

Thus, the energy of a single test particle is changing during its motion
according to (14.31). This result is easily understandable because of the
physical interpretation of the field p. This field is connected to the effective
gravitational constant

Ger= Gnp'"? (14.32)
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(G is the Newton constant). It means that if p # const the effective strength
of the gravitational interaction is changing during a motion and because of
this the field p changes the rest energy of the test particle. Moreover, the
total energy of a test particle in a rest frame and the field p is constant.

In general the scalar force can act as a “friction force” or “amplification
force™ transforming the energy of a particle into the energy of the field p
and vice versa. If the field p depends only on time, then equation (14.31)
describes the change of the energy of a test particle due to the time
dependence of the effective strength of gravitational interactions, in a
composition-dependent way.

Let us solve equation (6.2) in a weak-field approximation using an
iterative method. In order to do this, we write equation (6.2) in a more
convenient form,

Lbﬁa = hbc(lcdgay.g#deB'y - lcdg[ap.]g,ll’yLdB’y - ldcg[p.ﬂ]gw"Ld'ya) (14-33)

and define the transformation

(n+1) (n)
LPga=M"}" L%, (14.34)
such that

(0)
L%, =h"l4H", (14.35)

(nzlb)ﬁa = 1" (1.48,.8" "H s, — lcdg[ap.]gw},(z’)dﬂ‘y - ldcg[ﬂﬁ]gy“L(;’)d'ya) (14.36)
One easily gets

(n+1) ()
LA pa = (M"H)dewga LeM — (Mn+1)de;uv y hefldedM (14.37)
The power (n+ 1) means the (n + 1)-iteration of the transformation (14.36).
We get

(n+1) (n) (")d (n—ii)
d d b
L Ba L o« _h C[lcdg[a;b]g#‘y( L By~ L 5‘)’)

(n) (n—1)
+ L€ (L%, — L%3,)] (14.38)

Now let us suppose that the field g.; is weak. This means that we assume
that

8op = Map + Pap (14.39)
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gl =nP+h* (14.40)
|hagl, |h*f|<a«1

where 7,5 is the Minkowski tensor.
In this case one gets

g =" —n"n"h,, (14.41)

The skew-symmetric tensors L?,, form a natural 6n-dimensional vector
space. Let us define the following norm in this space:

IL) = max |L%.] (14.42)

d=12,..,n

Thus, our space becomes a Banach space. For sufficiently small o one finds

(n+1) (n) (n)y (n-1)
| L —Lj=B(e)JL~ L | (14.43)
where
0<B(a)=96n2h(h+|ulk)a <1
if
et
* ™ 96n2h(h +|plk)
and

h=max(jh,)),  h=max(lhs),  k=max(k,l)

Equation (14.41) means that the transformation is a contraction. According
to the Banach theorem, this transformation has a fix point

(0)

(00)
Liga=M5 L%, (14.44)

such that

(c0)

L dBa = 'lli:nolo(Mn )deupﬁaheclcdepu

(c0)
= Mdeuuﬁahec Cdep,V (14.45)
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The limit is understood in the sense of the norm (14.40) and
)
M4 g, = im(M")" ", (14.46)

The limit (14.46) is understood in the sense of the usual linear operator
topology generated by a topology of a Banach space. According to the
Banach theorem, there is one and only one fix point of the transformation
(14.36) (in a weak-field approximation). Thus, we get that

()
Ldch = Mde,“lﬁa hec cfoy,u (14.47)

In this way we can rewrite the equations of motion for a test particle in the
following way:

ﬁu“ qc a 1 a o
7 +(;0) uf [lcdg ‘SHdBa —'2‘ (Lag ? _ldcgs )
() lql® 1
X Mol H ] “gm2 £\ 5) =0 14.48
polt e | T g2 8 p’) g ( :

Let us remark that, as in the electromagnetic case, we can consider
different equations of motion for a test particle, i.e.,

(dzx“ { a }dxﬂ dx’) (q‘)(dx5>
+ V()=
dr? B v} dr dr my/ \ dr

1 o X
X [lcdgastBrS _5 (lcdg ? Idcg5 )LdBS]

2
_Lal sem (_15) =0 (14.49)
8m0 P /.8
and
(L) = const (14.49a)
my

Let us notice that equation (14.49) has the same integral of motion as

(14.25), i.e.,
dx®\(dx"\ _ llql
g(ap)( ar )( ar ) _Sm(z)pz = const (14.50)
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In the case of p =const we get

dx°\ [ dx*?
=== 4,
g(aﬁ)<d7_>( dT) const (14.51)

Thus, we formulate the following theorem:

Theorem 1V:

1. Let conditions 1-3 from Theorem III be satisfied (see Section 4.3).

2. Let p =const.

Then Theorem 111 is satisfied and one has the first integral of motion
of geodetic equations with respect to the connections w5 and &*5,

vy(hor(u(r)), hor(u(r))) = const

Equations (14.49) and (14.49a) are geodetic equations with respect to the
connection &”*5 defined on P such that in place of the connection @ we
put in (6.1)

o -
3%, = 97 14.52
© e {B 7} (14.52)

where {3 “,} is a Christoffel symbol formed for a metric g,g,. We can also
consider different Christoffel symbols formed for a metric p.z = pg., Where

paBg(aV) — 6‘37

and g** is an inverse tensor for g,g.
Let us consider a geodesic deviation equation in our theory,

uPV 0t [V, VelutuBt™ =0 (14.53)
or
uBV o+ R agu e Mu® — QN yaV au tMu? =0 (14.54)
and
UBVau*=0 (14.55)

where u® =u*=dx*/dr, v*=d(*/ dr. )

In this way we consider a generalization of the geodetic deviation
equations to the (n+4)-dimensional case in a non-Riemannian geometry.
Using equations (6.1), (6.11)-(6.16), and (6.22a)-(6.221), one gets from
equation (14.54):

(P 0% + R uP 0 u” — Qs (D) g uP)



368 Kalinowski
q b
+ (~2—m_) Lag*®(2H" s — L 5)v" — p*v"l,,g8 i AT
o

_ _q"_ 5(aB) 1 b
(2pm )g p,ﬁ bnU

+ 2p2(lcdgaw(2H wlp ™ w[p. )L v]B + ldbg LdSaHby.V)u‘yg#

b

Tt 20 (P78 ™ (QH 3y = L,5)

+p’lag ™ (2H" 5 — L% 5)Q7,.(T)

- Pg(aB)P,Blbch#v + 2PlbdgaB (2Hd[u!ﬁl - Ld[mm))glalu]g(sy)P,y}Z““ ’
+{plag*“gssf*p [ (2H ", — L) — ¥ . (02 1g®* L%p)

—pg*p, lchC,;,L}

(( g ~tu )+(2P4ld[blle|f]8'sag L%, L%
(e g’
+§p .gps8 P:l[bf1+ l,,,,,g e pbf) (2m0 pz)
VY, (08P p ) lha +V (¢ lbd(szp,B L))

b
» e . g
— p4ldalbfg8 gYBLds.y(ZHf“B - Lj,uﬁ) - g( g)p,lg&l-g(s )p,Vlba} <2m pZ)
0,

+

X ((au“ - 2‘; ) +(pg' " p gl C* o +20°8Pp 887 L5 Latalipiey)
X (Z i : ) (2p21bdgVﬁdeﬁ + Pz(lbdgyﬁ + ldbgBV)L By)

f b
af d _Ld v q _ b 'y)
(v (et i (D)) (o755

q’ ‘v’
—2upg™Pp ,;kbc<V u+= (lbfg‘”(ZH 4, —L% )(“)))(—)

my 2m0p
2 dayd 1 ~ap) qb\ i
+2(H" — L") (p ling*“L55u® "2 8 el (;0)) o

1. q°
o ayd (aB) —_—
_g u-g( ﬁ)P ¥y (pldmga L 6/3“3 +2p2 g p,Blbm (m0>>

q° m o 1 1 5B
x| o* > —vu ’“g mb(r) P ldng Lsﬂ“ "Zg

(D)



Nonsymmetric Kaluza—Klein and Jordan-Thiry Theory 369

and

() () - O (550) o (55)
&R f ~ 0" ()Y, "
dr bd(szmo { szmo Q b( ) 2p2m0 v 2p2m0
a 1 ~ Ao i
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_Zupg(lfﬂ)p kb (__l_(q_a)p + 1 u +_1_g "’(57)p q_a
,BVbe p3 mo W 2p 61/ v

)
2szo

~(2p°lag PH 5+ p*(lag™* + Lg® ) L,)

1/(q° 1 q° q°
T ) A
( o’ <mo)p i 2p° 8. my v 2p%m, v

1 q° 1
+— 2458 p 0° (——) + L%, 0Pu"+—g,,8%"p vu”=0 14.57
2p3 gﬁ&g p,‘y m, Bv p 8s 8 P yv u ( )

Simultaneously, equation (14.1) is satisfied and
g° = const (*)

is an integral of motion. Moreover, in this case we consider the flow of
geodesic I'(o), oe U< R/, given by

x4 =x%(7, o)

é«A - (§_x_a .‘?ﬁ)
3o " oo
o is a parameter such that for every o, # o,, x*(, 0,) and x*(1, ,) are

different geodesics. One can say that we have a family of geodesic curves,
I'(c). The geodesic considered here is I'(ay), i.e., for o = g,. Thus,

and

. erU

o=0y

dx*® 1 (q°
=y'=—|-— 14.58
dr ! 292 (mo) ( )
where p = p(7, o) = p(x(7, ¢)). Thus, one gets
1 d
X = ( >( )J S+ x8(0) (14.59)
2 0 0°(7, 0)
Thus,
8 {q° T odr ) dx}
e =9 14.60
(L Jn,p%, M oo do (1460
¢ 3 (q° 1 )
== (o) 55— 14.61
A e (1a.61)
® is (of course) an Ad-type quantity. In this way we get
dv® 4
—= — 14.62
dr aa'( () 87’) o=og ( )
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In this way equation (14.56) together with equation (14.1) gives us an
interpretation of geodesic deviation equations in N?AJT?. They are
analogous to the deviation equation for charged particles moving in a
non-Abelian Yang-Mills field and nonsymmetric gravitational field as well.

Let us remark on a physical interpretation of the vector ¢* = (%, ¢%).
The vector {*, “geodesic separation,” is the displacement (tangent vector)
from a point on the fiducial geodesic to a point on a nearby geodesic
characterized by the same value of the affine parameter 7. Thus, v = (v°, v%)
means a relative “velocity” and u®Vzu* a relative “acceleration” equal,
according to equation (14.53), to a commutator of covariant derivatives.
Thus, we get “tidal forces” in N*AJT” [(n +4)-dimensional case], i.e., for
charged (in the non-Abelian gauge field sense) test particles in N°AJT?. In
this equation we get gravitational “field forces” from NGT, Yang-Mills
“tidal forces,” and additional effects which can be treated as gravito-Yang-
Mills tidal forces. The scalar field p is also a source of additional “tidal
forces.”

These new effects are “interference effects” between gravitational and
non-Abelian Yang-Mills interactions described by N°AJT?. The commutator
in (14.53) can be treated as the (n-+4)-dimensional analogue of ‘tide
producing gravito-Yang-Mills forces.” We can try to project our equations
on a space-time E (they are defined on a bundle manifold P), taking any
local section e of the bundle P. In this way we get gauge-dependent charges
Q“ and gauge-dependent 7.

We can substitute 7° into equations (14.56)-(14.57). However, we
should substitute in place of dv”/dr the expression

dv*®
dr

— C% A uv® (14.63)

where as usual e*w = A%, 0"X,,.

Finally, we remark that equation (14.56) represents tidal gravito-Yang-
Mills forces and equation (14.57) is the relative change of (¢®/m,) (o) for
different test particles via v” [or (Q°/my)(o) via $°].

15. CONCLUSIONS AND PROSPECTS

Thus, we get a theory which unifies gravity, gauge fields, and scalar
forces. The gravitational field in this theory is described by a nonsymmetric,
real tensor g,,, (and a scalar field ¥), which connects it with Moffat’s theory
of gravitation (one of the most important alternative theories of gravitation;
see ref. 34 for a review). The nonsymmetric Kaluza-Klein (Jordan-Thiry)
theory has been previously designed as a unification of Moffat’s theory of
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gravitation and the electromagnetic (or Yang-Mills) field. However, there
are some differences. First of all, Moffat and his co-workers use extensively
the Einstein-Strauss theory (see ref. 35), but not the Einstein-Kaufman
theory. The Einstein-Strauss theory in its hypercomplex version cannot be
extended in any simple way to higher dimensions, even in the five-
dimensional (electromagnetic) case. It is also a hard task to incorporate
spin sources in the Einstein-Strauss theory. In both cases, we meet a
fundamental physical problem. The Lagrangian becomes hypercomplex
(not real). In our case we do not have these problems because everything
is real. In the case of the nonsymmetric Jordan-Thiry theory, we effectively
get the scalar-tensor theory of gravitation in the nonsymmetric version. The
scalar field behaves very well in the linear approximation. It has been proved
(see ref. 29) that we could avoid tachyons and ghosts in the particle spectrum
of the theory (if we put m > 0). In the case of classical Jordan-Thiry theory,
the scalar field is a ghost (a negative kinetic energy). This new version of
the Kaluza-Klein theory is capable of removing singularities from the
solution of coupled gravitational and Yang-Mills equations even in the
case of spherical symmetry. Such solutions have been found in the electro-
magnetic case (see refs. 30 and 31). It is well known that in the case of the
Einstein-Maxwell equations we cannot get any nonsingular, localizable,
stationary solutions (the so-called Hilbert-Levi-Civita-Thiry-Einstein-
Lichnerowicz-Pauli theorem; see refs. 36-39). This result has been recently
extended to the case of non-Abelian gauge fields (see ref. 40). Recently
some particlelike solutions of Einstein-Yang-Mills equations have been
found (see Bartnik and McKinnon, ref. 40). However, they are magnetic
monopole-like solutions and not of electric type.

Quiet recently, Mann (ref. 31) found eight classes of spherically sym-
metric and stationary solutions in the nonsymmetric Kaluza-Klein theory.
These solutions are more general than those from ref. 30 and some of them
have no singularities in gravitational and electromagnetic fields. Some of
these solutions possess a nonzero magnetic field and nonzero gy =f#0.
The nonsingular solutions are parametrized by fermion charge I, electric
charge Q, and a new constant u,. This constant is related to gp,;; in a similar
way that I is to g4 It plays a similar role for gp,,) as magnetic charge
for F,,. We recall that the first exact solution found in ref. 30 has no
singularity in an electric field and a finite energy. However, it has a weak
singularity in g;.z7. In this case we put gp»3; =0. It seems that we can extend
these solutions without any problems to the non-Abelian case.

Thus, we can look for models of elementary particles as solutions of
field equations.

In the theory there are two field strengths for the electromagnetic
(Yang-Mills) field, F,,, H,, (H®,,, L°..). The first is built from (E, B)
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[(E% B*)], the second from (D, H) [(D® H")]. The relations between both
tensors are given by equation (6.2).

According to current ideas (see refs. 103-105) the confinement of color
could be connected to the dielectricity of the vacuum (dielectric model of
confinement). Due to the so-called antiscreening mechanism, the effective
dielectric constant is equal to zero. This means that the energy of an isolated
charge goes to infinity. Now, there are also the so-called classical dielectric
models of confinement (ref. 106). The confinement is induced by a special
kind of dielectricity of the vacuum such that E# 0and D=0 (E® % 0, D” =0).
In this case we do not have a distribution of charge. This is similar to the
electric-type Meissner effect.

It is easy to see that in our case (the nonsymmetric Kaluza-Klein
theory) the dielectricity is induced by the nonsymmetric tensors g,, and
L. If g,,7=0, D=E and B=H.

The gravitational field described by the nonsymmetric tensor g,,
behaves as a medium for an electromagnetic field (gauge field). The condi-
tions E#0, D=0 (E“# 0, D" =0) can be satisfied in the axial, stationary
case for F,,, H,, (H®,,, L,.), g,.. Thus, it is interesting to find the exact
solution with axial symmetry for the nonsymmetric Kaluza-Klein theory
with fermion sources for G = SU(3).. This could offer us a mode! of hadrons.

The axially symmetric, stationary case seems to be very interesting from
a more general point of view. We have in general relativity very peculiar
properties of stationary, axially symmetric solutions of the Einstein-
Maxwell equations. These solutions describe the gravitational and electro-
magnetic fields of a rotating charged mass. Thus, we get the magnetic field
component. Asymptotically (these solutions are asymptotically flat) the
magnetic field behaves as a dipole field. We can calculate the gyromagnetic
ratio at infinity, i.e., the ratio of the magnetic dipole moment and the angular
momentum moment. It is worth noticing that we get the anomalous gyromag-
netic ratio (see Kramer et al, ref. 107), i.e., the gyromagnetic ratio for an
electron (for a charged Dirac particle). We cannot interpret the Kerr-
Newman solution as a model of the fermion, for we have a singularity. In
the nonsymmetric Kaluza-Klein theory we can expect completely nonsin-
gular solutions (refs. 30 and 31). We can also expect the asymptotic behavior
of the Einstein-Maxwell theory. Thus, it seems that we probably get sol-
utions with an anomalous gyromagnetic ratio. Such a solution could be
treated as a model (classical) a spin-3 particle. In the non-Abelian case
[G=SU(3) X U(1)n] this could offer us a model of a charged baryon
(i.e., proton), where the skewon field g, ,; induces a confinement of color.
In this way, the skewon field g,.; plays a double role: (1) additional
gravitational interactions (from Moffat’s theory of gravitation), (2) a strong
interaction field connected to the confinement problem.
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It has been proved by Mann and Moffat (see refs. 108, 109) that the
skewon field g;,,; has zero spin. In a linear approximation it is the so-called
generalized Maxwell field (an Abelian gauge field). Thus, it is natural to
expect an exchange of some spin-zero particles in the nucleon-nucleon
potential for low and intermediate energies. We do not observe such parti-
cles. However, we cannot fit experimental data for the nucleon-nucleon
interaction without the mysterious o (spin-zero) particles (see, for example,
refs. 110, 111).

It happens that we need two such particles to fit the data. In our
proposal, they are connected to the skewon field g, and to the scalar field
¥ from the nonsymmetric Jordan-Thiry theory. The reason we do not detect
such particles directly seems to be clear now. They are confined, because
they are actually a cause of confinement. The scalar field from the nonsym-
metric Jordan-Thiry theory induces an additional dielectricity of the vacuum
[see Lagrangians for the scalar field ¥ and for the Yang-Mills’ field in
equations (8.1), (8.7), (10.6)]. Note that a function of the scalar field ¥
appears as a factor before the Yang-Mills Lagrangian in equation (8.7).
This has some important consequences: the effective gravitational “con-
stant” depends on ¥ and in the flat space limit g,, = 7,, the Lagrangian
resembles the bosonic part of the soliton bag model Lagrangian if we put

e”o“'=2<1*£>; o = const (15.1)
To
for n=8, G=SU(3) [see refs. 112, 113).
One finds
1 1-o0\ In2
V=——1 - 15.2
10 n( o ) 10 (15.2)
and in the flat space limit one easily gets
1
F=—= (1 —1)(ha,, + wk k. YH  JH™
4 (21}
2
G-Op(;u') + mo, T]MVO-,;;,U',V (153)

167 (oy—0o) 100(oy—0o)*

The full Lagrangian (8.7) is more general and it contains a gravitational field.
Friedberg and Lee (see ref. 114) consider the soliton bag model with
a more general factor K (o),

£ =—1K(0)hyo H* H?,, ~13,00"0 — U(c) (15.4)

They consider that the scalar field o is a new dynamical field with self-
interaction given by U(o). The quantity K is a dielectric constant which
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depends on o. It is interesting to observe many similarities between (15.4)
and our Lagrangian from the nonsymmetric Jordan-Thiry theory, i.e., (8.7).
Thus, in our model we have in the flat space limit an effective dielectric
constant

K.a=4e % (15.5)

It is interesting to notice that the scalar field ¥ enters into the effective
gravitational “‘constant” and into the effective dielectric “constant” in the
flat space limit.

We recall that in a full nonsymmetric Jordan-Thiry theory (curved
non-Riemannian space-time) we have the following symmetry for the scalar
field (see refs. 19, 24):

P> = f(F) (15.6)

where f is an arbitrary function. In this way the formulas (15.1) and (15.6)
can be treated as transformations for a scalar field in the nonsymmetric
Jordan-Thiry theory. Thus, we can connect a bosonic part of some soliton
bag model Lagrangians via equation {15.6) in the nonsymmetric Jordan-
Thiry theory. In this way we see some possibilities of connecting gravita-
tional and strong interactions via the nonsymmetric Kaluza-Klein (Jordan-
Thiry) theory. This is a little in the spirit of the idea of strong gravity (see
ref. 115). It is easy to see that in the nonsymmetric Kaluza-Klein (Jordan-
Thiry) theory there are two metric tensors g(.g) and f,z such that

faﬁg(a}l) = ayﬁ; gaﬂgav = gﬁagya = 6713 (157)

and it is easy to see that if gj.;1=0, then f,z = g.p)-

Thus, we propose the Lagrangian of the nonsymmetric Jordan-Thiry
theory as the bosonic part of the Lagrangian of strong interactions. Why?
It seems that something is missing in the QCD Lagrangian. We have the
following objectives:

1. o particles (which we mentioned before).
2. An exact solution with color radiation (this means color at infinity—
no confinement) found by Tafel and Trautman (see ref. 116).

Thus, it seems that the QCD Lagrangian is incomplete in the bosonic
part. In our proposal, we replace the QCD Lagrangian by the Lagrangian
from the nonsymmetric non-Abelian Jordan-Thiry theory for G = SU(3)..
In this way we can get a dielectric model of confinement and a soliton bag
model-like Lagrangian (see refs. 112-114 and 117).

Thus, we propose the following program of investigation:

1. Find exact solutions of the nonsymmetric Kaluza-Klein and Jordan—
Thiry theory in Abelian and non-Abelian cases with and without fermion
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sources in the case of spherical and axial symmetry, using inverse scattering,
and the Riemann invariants method (ref. 118), and examine their classical
stability (for example, Poincaré stability).

2. To find an effective interaction of two axially symmetric solutions
exactly, or, using some numerical methods in the case of G = SU(3),, with
fermion sources. This could be similar to the nucleon-nucleon interaction
in the Skyrme model. The solutions should be treated as particles using a
collective coordinate method.

3. To find wavelike solutions of the field equations in the Abelian and
non-Abelian cases. This could, in the electromagnetic case, offer a solution
which could be treated as a kind of electromagneto-gravitational wave
(nonlinear wave) with nontrivial interactions between all fields. The objec-
tive of this hope is related to points 4 and 5 in the list of “interference
effects” (we recall that the displacement current in the classical Maxwell
equations leads to the nontrivial interaction between the electric and mag-
netic fields—the raison d’étre of the wave solutions for the Maxwell
equations; however, this is only a historical remark). By a nontrivial interac-
tion, we mean that the flow of energy is possible from one field to another
in a quasiperiodic way.

One can try to use the following Ansatz for the simplest gravito-
electromagnetic wave in our theory (see ref. 107)

g = 8lap) dx° ®dx” = ds>= Q(dx*+ dy*) —2 du®dv—2H du’
g=Adundx+Bdundy= g, dx" rndx”
F=Cdundx+Ddundy=3F,, dx* adx”
H=Edundx+Kdundy=3H,,dx" rdx"

where u=z—1t, v=z+1t and
H=H(x,y,u) Q=0Q(xy)
A=A(x,y,u) B=B(x,y,u)
C=C(x,y,u) D=D(x,y,u)
E=E(x,y,u) K=K(x,y,u)

are arbitrary functions of their variables. In this case we expect that H,,, #
F,, and the polarization tensor M,,, is not zero.

There are also some proposals concerning cosmology:

To find a cosmological solution of Bianchi type I in the nonsymmetric
Kaluza-Klein theory with material sources (ref. 25). Homogeneous, plane
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symmetric, i.e., Bianchi type I space-time in comoving coordinates, has the
metric

—a(t) 0 G w(t)
| o -B® 0 0
—w(t) 0 0 1

The electromagnetic strength tensor F,, has only two nonzero
components,

Fiy=E(1), Fp; = B(t)
The same is true for H,,,
H,,=D(1), H,;=H(t)

One easily gets E(t) = D(t) and B(t)= H(t). The Bianchi identity yields
B = B, = const.

Thus, the cosmological model in the nonsymmetric Kaluza-Klein
theory is described by «(t), 8(¢), w(z), E(t), and a constant B,. For a
perfect fluid cosmology we should take

T =(p+p)u*u”—pg"” (15.9)
where the velocity four-vector #* is in comoving coordinates given by
u'=0
ut=1

g u" =1
T=g"T, =p-3p

The four generalized Bianchi identities on G,, = R,,, —3g,.R give tise to
the set of covariant conservation laws

((—2)"*gT,, +(—8)"g"T,,)  + 8" ,(—-8)"*T,, =0 (15.10)

We expect a completely nonsingular solution of the field equations and
equation (15.10) for (15.9) and (15.8). It seems that the nonsingular behavior
will be better than for nonsingular solutions in the Einstein-Cartan theory,
where the metric and density of matter are nonsingular, but torsion and
spin are singular.

We propose a program of research which consists in finding exact
solutions in this theory. These solutions could be treated as models of
particles (generalized skyrmions; ref. 119). Our approach seems to be more
realistic, because we include into the Lagrangian both gauge and gravita-
tional fields. In the Skyrme model we have to deal with an effective model
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of strong interactions. This model, despite many spectacular successes, has
some problems. For example, a mass difference between nucleon and A**
particle. Moreover, the interactions between two skyrmions can give a
qualitatively good description of a nucleon-nucleon potential (ref. 111). In
this way we could approach some classical nuclear phenomenology as in
ref. 120. Moreover, there is a problem with a central attractive potential in
the model. Our approach probably could improve this fact.

One could search for axially symmetric, stationary solutions in the
nonsymmetric Kaluza-Klein (Jordan-Thiry) theory using the formalism
presented in ref. 121. Looking for axially symmetric, stationary solutions
in the nonsymmetric Kaluza-Klein theory, we can try the following form
for g1, Fou, Hy.,, and ge.y:

mys

0 0 ace’ ae’
0 0 aBe” e’
v] = 15.11
Bl ™| _gqer —aBe” 0 0 ( )
—aae® —aBe’ 0 0
0 0 -B, -E,
0 0 B, -E
F,= ° : 15.12
“~\'B, =B, 0 0 (15.12)
E, EE 0 0
0 0 -H, -D,
0 0 H, -D
H, = g : 15.13
w ' H -H 0 0 (15.13)
D, D, 0 0

and

Zap) dx* @ dxP = ds* = e*(dz*+ dp®) + X dp’ +2 Wde ® dt — V dr’
(15.14)

where all the functions a, o, 8, u, v, B,, B,, E,, E., H,, H,, D,, D,, X, V,
and W depend on p and z only. In this case we expect that F,, # H,, and
we will get a nonzero polarization tensor M,,,.

Finally, let us reconsider equation (10.14) and rewrite it in a more
convenient way using M“,; defined in Section 10,

1
Tz(g) = ldchBg WSMdya + lcdgaégsdeB‘y ‘"E (lcdgsgg ySdea - ldcgaﬁgsde,B-y)

=0 (15.15)
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Equation (15.15) can be rewritten in a matrix form:

T(g)=g(g )" (1xM)+g"g '(I" *M")
—(glg™) U+ H)—gTg™ (17 + HT))

= (15.15a)

where “T” means a matrix transposition and “#” the action of an nxn
matrix on an n-dimensional vector.

According to equation (10.14), the tensor L®,; is expressible by H®, 4
and g,,. The equation is linear with respect to L®,5 and can be solved. The
quantity M“,, has the physical interpretation as the polarization tensor for
the Yang-Mills field. Simultaneously, we get the geometrical interpretation
of M“,; as a torsion in higher dimensions (Q“,z =87M?“,5). Thus, we
come to the conclusion that it would be possible to reinterpret the theory
as a theory with nonzero torsion in higher dimensions as a fundamental
quantity. In this way the tensor g,g is a solution of equation (15.15) and
H¢,, and M*“,, are known quantities. Moreover, equation (15.15) is non-
linear with respect to g,, and, because of this, more difficult to solve. In
this way we reinterpret the full theory as a theory with torsion in higher
dimensions. Thus, our theory has many similarities with previous
approaches, i.e., the Kaluza-Klein theory with torsion (see refs. 16 and 17).

Equation (15.15) can be considered a system of nonlinear equations
for g =(g.p) € X. Moreover, we have to deal with n transformations defined
in D(T,)e X, ie, T, X» X, a=1,2,..., n. Equation (15.15) says that

g€ D(T,) = D(T) ={g, det(g,s) # 0}

is a common root of n transformations T If such a system of equations
is coherent, we can try to solve the system and to find g The system is
coherent in an open neighborhood of hoe D(T) if

dTg—n,
Rank dTZ':F'“’ =16 (15.16)
dTyiemn,
AT, _n,€ B(&, Z), and
Rank|dT, ;| =16 (15.17)

foreverya=1,2,...,n
Thus, if equations (15.16) and (15.17) are satisfied, we can try to find
£. Let us notice that if § satisfies equation (15.15), then xg, x # 0, satisfies
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it as well. Equation (15.15) can be solved using iterative methods. The
convenient method seems to be the generalized Newton method, i.e., the
method of W. L. Kantorowitch, as in the electromagnetic case (five-

dimensional).

If the conditions (15.16) and (15.17) are satisfied, then one can choose
any 1= a,=n and consider the transformation T,,: X - X. The solution of
equation (15.15) can be obtained from T,o(g) =0 using the Kantorowitch

method. In particular we construct a sequence

(b)
g =hg

(a1+1)

(h) a0 (n)
g =g ~[(dT.), ] ' T*(g)
g

or
©
g =ho
(n+/1) (hz —1 a6 (n?
g =g —[(dT.0)|s] T*(g')
looking for a limit
() )

g=1lim g
n=co
or
@)
g =lim g’
n=o0

If the sequences converge, one has
(e0) (0)
T 8)=Tao(g')
and of course, because of equations (15.16)-(15.17),
) (o0)

(0
T.(g)=T,(g')=0 for a=1,2,...

The sequence (15.18) converges faster then (15.18").
One easily gets

((dTa0)|g)* ap = lua,(87s8™" = gaﬁg’”g“‘;)(mdm -

1 (8% .87 — gaaga”g”)<M Yoy —

1

47

1

4m

i dea>

Hdﬁv)

(15.18)

(15.18")

(15.19)
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and similarly (d*T,,),,, Which we do not write here.
Finally, we get
()
h;w = 8 [MV](Mdtllw Hdpa)
i.e., the skewon field induced by the Yang-Mills field and the polarization
tensor.

Let us note that we can proceed in the following way. We can calculate
guv1induced by an electromagnetic field F,,, and its polarization M,,,.. After
this we can substitute this tensor in equation (10.14), getting the Yang-Mills
polarization tensor. In this way F,, and M,,, induce the skewon field and
the polarization of the Yang-Mills field.

APPENDIX A

Let us consider a more general form of the nonsymmetric metric on P

in a lift horizontal basis,
gaB 0 )
= Al
YaB ( 0| P, ( )

y=1"g@p(w, )

where P, (13 =P,,0°®6") is a nonsymmetric invertible tensor on a group
G (negatively defined, right-invariant) and in general it does depend para-
metrically on a point on a space-time E. In Section 4 it is supposed that

Py zpzlabzpz(hab+l1‘kab) (P:le) (A2)

where p = p(x) is a scalar field on E, h,, is a Killing-Cartan tensor on G,

and k,, is a skew-symmetric right-invariant form on a group G. Now the

general shape of an affine connection w” 5 defined on P compatible in the
Einstein-Kaufman sense with the nonsymmetric metric on P is

WA = ( T*(@%) — Ppg* "Ll 0° | L5,0” — P*gss N5 0°

* T \Poug ™ (2HY, ~ L5,)67 + N3)0° | —P“g,,N%,6° + 6%

) (A.3)

where
0% = 9,05, PabPCb = pbapbc =%,

Compatibility conditions (4.7) for w®y read, in terms of Ldl,,,, N2, (which
are Ad-type quantities), and "%, (which is a right-invariant connection
of G)

def‘dac + Pad 1‘-—"dcb = Pab,c - PadCdbc (A'4)
g&‘debPCdNaca + gySPadeeNabe =—Py, (A.5)
PdchBgasLda-a + Pcdgaég&TLd o = 2Pcdga5g60HdBo' (AG)
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The connection (A.3) is right-invariant with respect to the right-action of
the group G on P.

Writing the geodetic equations (5.1) in w”5 [see (A.1)] (i.e., for ' P)
one easily finds for A=a [i.e., for ver(u(t))]

uBVau®=0 (A7)
[V, ver(u) =0, where u is a tangent vector to I'] or

du® ~
Td-t"'- LagyuBuV - uﬁu‘:(Pd'“’gB{;N‘sCe +PgssN°, )+ Iuu=0 (A8)

In the classical Kaluza-Klein theory the geodetic equation possesses the
first integral of motion, i.e.,
du*
dt

Let us suppose that (A.8) has first integrals of motion which are linear
functions of u i.e.,

=0, ver(u(t)) = const (A.9)

d a
;t =0, 09 =x%u’, v=%(ver{u(t))) (A.10)
and
ub=x%0° ver(u(t)) =#""(v) (A.11)
such that
7%, = 8%, (A.12)

and it is bi-invariant [R*(g)% = L*(g)% = %]. One finds, using (A.10)-(A.12)
and (A.8),

d T d b ¢, d ae 8
(% b,c_rebcx e)u uf+“3u % a(P gBSN ce

+PeagaﬁN6eb+??ef%fe’,3)-—xdaLaByuBuy=0. (A.13)
Thus we get
Laﬁy = _Lavﬁ (A.14)
(3% )+ Doy %) = 0 (A.15)
Paegﬁstce + Pe“ga;sN'Sec + ’?af%fc,g =0 (A.16)

For x“, bi-invariant, it is constant on every fiber and it can depend only
on a space-time point. This yields
x = x(x)8%,  x(x)#0 (A.17)
i

—a a
f % f



Nonsymmetric Kaluza—Klein and Jordan-Thiry Theory 383

or # = x(x)id,, £ ' =[1/x(x)]id,, where id, is an identical transformation
in the Lie algebra g (of G) and (A.16) reads

PaegﬁfsNSCE + PeagSBNsec + 6ac;_‘£ =0 (A.IS)
X

Comparing (A.5) and (A.18) for every x, g.a, N#%,,and P, one gets the
following conditions:

Pup=p’loy (A.19)

where [, does not depend on a space-time point,
N’ =N°l, (A.20)
x=p (A.21)

where p = p(x) is a scalar field on a space-time and N is a function of the
space-time point only. This can be achieved in the following way. Let us
consider (A.18) and transform it into

8os(PN°, —3V°8° )+ g5 (PN’ ~3V®6°)=0  (A.18%)

where V®=—(1/%)§®"% ,, and V° is a function of x only.
Thus, we get

paeN5 =%V55ac
PN’ =3V°8° (A.18%)

for g, an arbitrary nonsymmetric tensor.
From (A.18+%) one easily gets

Nsce :%Va ce (Alg***)

Let us consider equation (A.5), substituting equation (A.18+x%#) into it. One
gets

(ln %),‘y . Pab = Pab,y (A5*)
One gets from (A.5#) the following formula:
Poy = xl,,

where [, is right-invariant and does not depend on x € E, i.e., (A.19)-(A.21).
Thus, we get the connection (6.1). Demanding the existence of the first
integral of motion

a 8
v((hor(u(z)), hor(u(r)))) = g(a5)<%) (ddit) = const (A.22)
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we get p = const (see Section 4.12). In this way we get Theorems I and II
given in the Introduction. Roughly speaking, Theorem 1 establishes
the nonsymmetric (Einstein-Kaufman) G-structure (a right G-structure)
with the usual interpretation of the geodetic equations as equations of
motion for a test particle, i.e., possessing non-Abelian gauge-independent
(and gauge-dependent) charges satisfying the Kerner-Wong-Kopczyhski
equations. We can repeat all the considerations for a left-invariant structure.
If we calculate a curvature scalar density for a connection (A.3), we get the
following expression:

[7]'"?R=|y["{R+R+[Pug?”g* L ,sH",, —2P.s (8" H., ) (g “F H )]
+2ys(N 7P (N°uP") = PFPg s N* N,
+ P*P“g,5)N®.N°;, +2PYP*g ;N° N”,,
2V (N7,P®)}+full(n +4) — divergence (A.23)

Let us consider some different aspects of our theory. Let the tensor P defined
on the group G be parametrized by xe E, and we do not suppose any
invariant properties of the tensor with respect to the action of G. Moreover,
we suppose that the connection defined on the fiber bundle of frames over
P is compatible with the nonsymmetric tensor y (built with a help of the
tensor ﬁ). In this case we have the following theorem:

1. Let conditions 1-4 of Theorem I be satisfied except for the fact that
P is right-invariant with respect to the right-action of the group G
on P.

2. Let the curvature scalar of the connection w”g, (&), be invariant
with respect to the right-action of the group G on the fiber bundle
of frames over (P, vy) (lifted from the bundle P).

Let condition 5 from Theorem I be satisfied.

Thus, P is right-invariant with respect to the action of the group G
and it has a factorization property P= p’l, where p = p(x) is a scalar field
on E and 1=1,0°® 6" is a right-invariant tensor on the group G.

The proof can be easily obtained directly from the form of the curvature
scalar equation (A.23) in the case of symmetric g and arbitrary H®,,
(arbitrary ») modulo equations (A.5), (A.6), (A.14), (A.16), and (A.18).

In Section 3 we mention the right-invariance of the Einstein connection
on (P, v). What does this mean?

Let ®: G x P~ P be a right-action of the group G on P and let ®*(g)
be a contragradient map to ®’(g), a tangent map to ® at ge G. Let
3:G- GL(n+4),R) be a homomorphism of groups and let us consider a
connection @ on a fiber bundle of frames over P with a structural group
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GL(n+4,R) compatible in the Einstein-Kaufman sense with the nonsym-
metric tensor y (see Section 1). The connection is right-invariant with respect
to the action of the group G on P if one has

&*(2)é = Adornia, m(E(g )G

(@ is an action of G on P lifted to this bundle) or for any local section E
of the bundle of frames over P,

o*(g)I'= AdGiin+a, R)(z(gfl))r*' Z_I(g)dz(g) (A.24)

where I'= E*, T =T*3-0°X 2,, and X, are generators of the Lie algebra
gl(R, n+4) of the group GL(n+4,R) and Adg(x+ar) IS an adjoint rep-
resentation of GL(n+4,R). Thus, one gets

(I)*(g)FA,B’C’:EAA(g_l)FABCEBB’(gAI)ZCC'(g—I)
+37% 0 (2)d. 25 (8)2 (g) (A.25)
where d, is a vector field duel to 6°. The reper transforms
D*(g)0° =3 (g6 (A.26)

Let us take the lift horizontal basis. In this case one gets

A _ 6aB 0
2p(g) = (‘O—"U—ub@) (A.27)

where U%,(g)=(Ads(g))%, is a matrix of the adjoint representation of G.
Thus, we have

D*(g)o* = 0"
D*(g)0" = U“,(g)0" (A.28)
Oy =1,
() =U"(g N % (A.29)

D ()T g = U (g M Ue(g)
STy = U u(g %, U 0(g™")
DHQ =T, U (g ™)
For 0% =1"%.6° one gets ‘
X"y =U" (g DU’ (g™") (A.30)

Thus, we get the Adg property of L"W, N, and equation (7.18) for I"%,..
In this way I'“,. has tensorial properties in the lift horizontal basis (Ad type).
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Moreover, equation (A.30) has a natural interpretation as a right-
invariance of the connection &, with respect to the right-action of the
group G on G. The second equation of (A.28) means the Ad property of
the connection on the principal fiber bundle P (a gauge bundle).

Equation (A.30) can be rewritten in the more familiar form

R¥g) =Adgri r/E(gNT+27(g)d3(g) (A31)

where I'= &%, Y?, and Y"?, are generators of the Lie algebra gl(n, R) of the
group GL(n,R) and Adg,(,, r) is an adjoint representation of GL(n, R) and
R is a right-action of G on G. Here

$: G- GL(n,R) (A.32)
is a smooth homomorphism of groups such that
iab(g) =(Adg(g))=U"(g) (A.33)

In this way we come to the notion of the fiber bundle of frames over a
group G and to the right-invariant connection defined on this bundle.
Equation (A.31) can be rewritten

R¥g)é=a (A.34)

where @ is a connection on the principal fiber bundle of frames over G
with the structural group GL(n, R) and
I'=r* (A.35)

f is a local section of this bundle. R is an action of G on G lifted to the
bundle of frames.

Note that our considerations are valid for any connection defined on
a fiber bundle of frames over P, not only for the Einstein-Kaufman one.
We can say the same for a connection on a fiber bundle of frames over G.
The above considerations justify some Adg properties of w”; defined on
the manifold P (a gauge bundle) and &“, defined on G (a group manifold)
(see Section 3). They are treated there as 1-forms defined on P or G
according to our conventions from Section 1. From (A.24) one easily gets
transformation laws for the curvature

d*(g) =0 (A.36)
and from (A.34)
R*(g) =0 (A37)
For the curvature scalars we get
$*(g)R(&) = R(d) (A38)
R*(g)R(d) = R(&) (A39)
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According to Section 4.5, the connection @ on the fiber bundle of frames
over the group manifold G can be induced in the following way. Let us
define a principal fiber bundle IT over G with a structural group G and a
projection 7. Let us define a connection = on this bundle as right-invariant
with respect to the action of the group G on G, i.e.,

R*(g)2=E (A.40)
2=2X, (A.41)

Taking any local section f of the bundle, one gets
fFE=2%"X, (A.42)

a

where V” are right-invariant forms on G. The quantity 2%, induces in a
natural way a connection on the fiber bundle of frames over G [see equations
(7.9)-(7.11) for dim G >4 such that

I vino’ =dE® (A.43)

Now we can construct a connection on the bundle IT using the connection
defined in Section 4.5. One has

8% —— k% (A.44)
in a local section f of II.
The corresponding curvature can be easily calculated,
Qs =dE+i[E, E] (A.45)
Thus,
f*Qg=dBE+iC T E 0! A v° (A.46)
or

Ld d =d d = — = —e =
F ab ™ C ef'—‘ a'—' b+ Ceab'—' e C ebh—'ea + Cdea—‘qb Fdab+ Cdef'—'ea*‘fb
(A.47)

Taking equation (A.44) and substituting it into (A.47), we get

_ -1
FdabzT Joli a,,+ cdefke i, ——(cdafkf cde,,k:)—% CPuk?,

(A.48)
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In the case of p = 0 (this corresponds to the Riemannian connection on G)
one gets

Fdab = “%Cdab # 0 (A.49)

Changing the section f to a section e, we transform E into = in a well-known
way (the curvature transforms similarly). Thus, we have it in any local
section of II and we can derive E.

APPENDIX B

Let us consider the equation of motion for a test particle [equation
(14.25)] in the limit of the special theory of relativity (i.e., gug = Map); One
gets

du® q“) b lql? 1
WL H™uf + wk LPu?) -5 ¥ —) =0 (B.1
d’T <m0 ( b Bu MKqp Bu ) Smg n P2 5 ( )

where g“ = const is a gauge-independent charge. Using equation (11.1), one

gets
e
dr

where k%, = h%k,,.
This equation has an integral of motion

—(q—a>(h —2ukay — w2k ko) H™ uB———”qHZn“ﬁ(L) =0 (B.2)
Mg ab MKap — 1 akdb B 8m§ pz p .

2
uu® - 4] = const (B.3)

8mgp®

77043

Let us find an interpretation of the integral of motion. In order to do this,
let us define the four-momentum of a test particle in the usual way:

p* = mou” (B.4)
One gets
2
NapP P’ — llqllz = const (B.5)
8p

In the case of p =1 we should get the usual formula from special relativity,
ie.,

naBpapB = m(z) (B6)

Thus, we obtain

271
naﬁp‘“p‘3=mﬁ[1+”‘§” (?—1) (B.7)



Nonsymmetric Kaluza—Klein and Jordan-Thiry Theory 389

E*—p*= [1+“‘é” (p2 1)] (B.72)

Thus, we should define the four-momentum of a test particle in a different
way, i.e., in the place of m, we should put

2 1/2
o[ )] e

Equations (B.7) and (B.7a) give us a scalar field correction to the rest mass
of a test particle. Now we can write some well-known formulas from special
relativity generalized to this case:

or

E =%‘(;f2)))—1/5 (B.8)
po (1"1°(V”2))vuz (B.9)
where
2 1/2
mo(p)—mo[H”qg” <p2 1)] (B.10)

and v is the velocity.

This gives us scalar field corrections to the famous Einstein formulas.
In this way we get the scalar field-dependent rest mass of test particles. For
the rest mass real we get the condition

lql

=T -s7 (B11
and
lql*>8 (B.12)
In terms of the scalar field ¥ one gets
lqll v
mo(W) =my, 1+?(e”—1) (B.13)

Thus, there is a maximum value of the scalar p (or ¥) for which the special
relativistic interpretation breaks down. This seems to be resonable because
of the interpretation of the scalar field p (or ¥). One has

Ger= GNP("H): Gy e 1Y (B.14)
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This means that we have to deal with a very strong gravitational field, i.e.,

max=GN< ”q”2 )"*2 o) (B15)
o (lql?-8)" lal?>s

For such a value of G.; even the gravitational field of a test particle is
strong. Now we go to an established frame with Cartesian coordinaties
(x,y,z) and a time ¢ The equation of motion for a test particle can be
written in the frame in the following way. Let us define

oo dr_[isllel*a/e”~ DI

dr (1—0?)17? (B.16)
dd Y [annZ(L_l)]‘”
dr (1-v?)'? 8 \p?
dx’[1+4]ql*(1/p*— D]
ZTJT (1 _U2)1/2 (B~17)
j=1,2,3. Thus, we get from equation (B.2)
1[ (H%Ilqllz(l/pz—l))‘”]
ar |’ 1—0?
(9% ; g b
—( )ga,,(E +VxH")
mg
||q”2< l_vz )1/2 (1)
+ Vi— (B.18)
8ms \1+3]ql*(1/p*~1) p’
and
d [(1+;||q||2(1/p2—1)>”2]
dt 1-v?
:—<_q—>gabEb'v
my
2144 g2/ =D\ d (1
el (1l 0y 4 1) .19)
8my 1-v dt \p
where
gab = hab +2l"'kab - ;u'zkdakab (B'20)
E®=(H1,, H3s, H3,) (B.21)

is the electric part of the Yang-Mills field and
B®=(H3s, H3\, H1b) (B.22)
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is the magnetic part of the Yang-Mills field. Let us define the kinetic energy
of a test particle

_ 1
Ex =E—"_10(P)=mo(l7)((l 2)1/2 1) (B.23)
Thus, the scalar field p (or ¥) plays the role of the so-called rest mass field

(see ref. 122), which is quite natural in scalar-tensor theories of gravitation.
Let us reconsider equation (14.25) for a zero m,. One gets

du® lo]i? 1
‘gl guf ——=— =] =0 B.24
dr 8ap gY 8 n pz 5 ( )
Napu*u’f =0 (B.24a)

where v” = const and is a measure of the coupling of a test particle to a
gauge field. Thus, we consider an ultrarelativistic case, i.e., a massless
“gluon” in a gauge field.

Equation (B.19) defines the change of the total energy of a test particle
and it can be rewritten

dE_ ||q||2(1+%llq||2(1/p2—1))‘/2d (1)
——=—¢"g,E" v+ —(=) (B25
dt ng vy Smé 1__UZ dt p2 ( )

Equation (B.18) can be rewritten in the form of a relativistic equation of
motion in an established frame with Cartesian coordinates,

dp b b ||q||2( 1-9? )1/2 <1>
F e 45, (EP +vx B®) + vi=) (B.26)
a8l 8my \1+4]1q]°(1/p°— 1) 2) ¢

Let us take the nonrelativistic limit of (B.9) and (B.23) (i.e., small velocities)

nonre] ”q”z( >]1/2 2
E" ; [1+ s (1 v (B.27)
2 1/2
l)nonrel = mol:l + ”q” (—15— 1)] \ (B.28)
8 \p

and equations (B.25), (B.26),

dE™! 5 lqll? d(l)
=+q°g,Ev— (5
dt * 8mo[1+4llq]*(1/p*—1)]"/2 dt \ p?

(B.29)

lal?

dpnonrel v (_1_) (B 30)
8mo[1+4q]*(1/p* 112 " \p? '

dt

=—g%.(E +vxB") -
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In the electromagnetic case we get similarly

dEr,ionrel q2 d( 1 )
= — cVyt+— —f — .
y qE-v+o—— p (B.31)
dpnonre] CIZ ( 1 )
—Sronrel +—v|(= .
it qg(E+vxB) 3 \% = (B.32)

where

gl 1 2
m=nmb+—§—;ﬁ—l

E is the electric field and B is the magnetic field, and g is the electric charge
of a test particle. Equations (B.30) and (B.32) can be considered as the fifth
force correction to the nonrelativistic motion of charged test bodies. Simul-
taneously we get that the inertial (nonrelativistic) mass depends on the
scalar field p (or ¥) and this dependence is ‘“‘chemical composition”

dependent,
271 1/2
mnonre1=m0[1+“i8”—(——2_1)] (B33)
p

The mass m,, because of equation (B.1), has the interpretation of the
gravitational charge of a test particle. This means that it is a passive
gravitational mass. Thus, one gets ’

inertia ? 1 vz
s [ JOP(1)) (534
P

mgrav.passive 8

In this approach the law of gravity is universal, but the inertia depends on
the composition of a body. This is exactly the reverse of other approaches.
Thus, the scalar field p(W) plays the role of a “rest mass field.”

Let us calculate the scalar field correction to the inertial mass of a
charged particle,

2
Mipertial = m0+Am(P)E mo+qu” Apmo (B35)
where
p=1+Ap
and
|Ap|«1

On the other hand, we have
G.s= Gy +AG=G(1+(n+2)Ap) (B.36)
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Supposing that the field p does not change much spatially, we can derive
a small correction to the Lorentz force in (B.30),

)
8 /dt

dv e
DL g e vx)+ g
My

a7 (B.37)

This correction can be tested experimentally because it is easy to extract it
from the ordinary Lorentz force. This is possible due to the different
dependence on g and because of the appearance of dv/dt. For zero electric
and magnetic fields on the surface of the earth we get

1

a=—7——5—¢ (B.38)
1+3)ql” Ap

where g is the gravitational acceleration on the surface of the earth. Taking
two samples with different charges

“qi”2=ris i=1:2

one can measure the difference in accelerations
Ar
Aa = al—a2%§ Apg (B.39)

where

Ar=|g,|*~|lg:|?

Thus, we get

(H) =é—p-Ar (B.40)
g 8

This means a linear dependence. Thus, measuring differences in the acceler-
ation of pairs of samples, we can test the predictions of the theory. For
example, we can try to reinterpret in a different way the results of Fishbach
et al. (see ref. 54) on a reanalysis of the E6tvos experiment.

Let us reconsider equation (14.28a) in a static field. Thus,

ds* = guu(dx*) — dPP = gu(dx*) — yy dx dx’,  Tj=1,2,3

and g4, vas do not depend on x*. One gets similarly to equations (B.7a)
and (B.8)

_ 2
EZ—P,zPK=m(2,|:1+“;q8“~(%—1)]=n‘10(p) (B.41)
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where

dx*

E=m e
Mo(p)8aa ds

dx*
[gaa(dx*)?—dl*]"?

= 1/2
- Doolge) (B.42)

_da__ 4
Cdr (g’ dx?
= 1o(p)ug = ig(p) yeryu' © (B.44)
PeP* = mi(p) yipyu'u’ (B.45)

= fig(p) Qs

(B.43)
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